

Monday 7 February 2022

To:
Site Engineer, Lendlease
Tweed Valley Hospital Project

Environmental Engineer & Director

mob: office: (02) 66-215-123

fax: (02) 66-218-123 ABN: 82 106 758 123

Re: Surface Water Quality Monitoring Results and Report for the Tweed Valley Hospital Project
Reporting period: 14 December 2021 to 18 January 2022

1.0 INTRODUCTION

Ecoteam is engaged to undertake monthly and event-based surface water monitoring on behalf of Lendlease Building, as part of the main works for the Tweed Valley Hospital Project. This report presents results from the 31st round of monthly sampling. This report satisfies the requirements of the SSD2 conditions. No controlled or uncontrolled releases from the sediment basins occurred during the reporting period.

2.0 PROJECT AIMS AND SAMPLING OBJECTIVES

The surface water monitoring objectives for the site are to detect changes during construction in receiving water quality resulting from the project. Stormwater discharges potentially contain increased sediment loads, nutrients, total and dissolved metals, hydrocarbons, or other contaminants such as pesticides. Baseline water quality data was performed on the 19 and 26 November and 19 December 2018 to record water quality conditions under the existing land use prior to construction (Lendlease Building, 2019).

3.0 WEATHER CONDITIONS

Total rainfall in the period prior to sampling (14 December 2021 to 18 January 2022) was 274.5 mm with the highest 24-hour rainfall occurring on 24 December, being 58.8 mm (Kingscliff BOM Station 058137).

4.0 SAMPLING LOCATIONS

Samples were collected from four of the five monthly sampling Sites (001 – 003 and 005). Site 004 has been infilled and has been removed from ongoing sampling rounds. Control samples were also collected and analysed (013 – 015). Sample codes and corresponding sampling locations are shown in **Table 1** and **Figure 1**. Site photos taken on the day of sampling are included in **Appendix A**. During sampling, Site 002 was noted to be flowing South. Therefore, Site 002 will be assessed as an upstream sample site.

Table 1. Monthly sampling sites, control samples, sample codes and applicable WQOs.

Sample Codes	Sampling Site Name	Short Name	WQOs
001	West Creek (Downstream)	WC	Estuarine
002	North West Creek (Variable)	NWC	Estuarine
003	East Creek (Upstream)	EC	Freshwater
004	Dam (Downstream)	Dam	Freshwater
005	Dam Drain (Downstream)	DD	Freshwater
013	Trip Blank	Trip	NA
014	Field Blank	Field	NA
015	Field Duplicate	Duplicate	NA

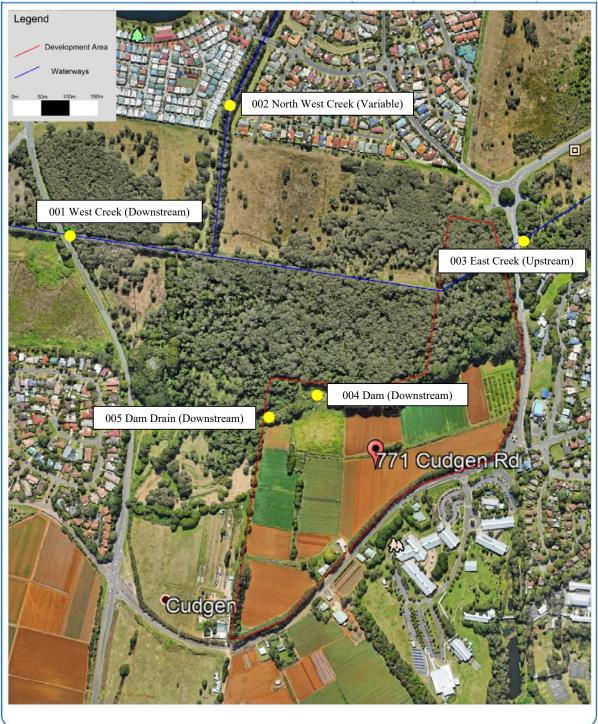


Figure 1. Map of monthly sampling sites (Source: Google Earth).

5.0 SAMPLING METHODOLOGY

Sampling was undertaken by on Wednesday 18 January 2022. Weather was fine and sunny. In situ physico-chemical measurements were collected using an AquaTROLL multi-parameter probe and Turbidity was measured using a Turbimeter Plus turbidity meter. Oil and grease were visually assessed. The calibration certificate for the SmarTROLL is included as **Appendix B**. The Turbimeter Plus is calibrated before each sampling round. Water quality samples were collected at 300 mm below the surface where possible. Samples were collected from the bank using an extension pole.

Samples were filtered and preserved on site where necessary, stored on ice and couriered over night to the NATA accredited Envirolab in Sydney. Trip blank samples (013) were sent from Envirolab and transported to all sites, then returned to Envirolab with the field samples. The field blank samples (014) were assessed at Site 002. Duplicate samples (015) were collected at Site 001 and were filtered and preserved as required. Field and trip blanks were filled with deionized water and do not represent water quality from the site. A full list of analytes for the project are included in **Appendix C**.

6.0 ASSESSMENT CRITERIA

Water quality results were compared against the Water Quality Objectives (WQO) in the following guidelines.

- NSW Water Quality Objectives for the Tweed River Catchment for Aquatic Ecosystems (Tweed 2006) - Trigger criteria for estuaries.
- Australian and New Zealand guidelines for fresh and marine water quality (ANZECC 2000) Trigger values for freshwater (level of protection 95% species).

7.0 RESULTS

7.1 Physico-chemical Results

In situ physico-chemical sampling results with comparison to WQOs are shown in **Table 2**. There were no surface sheens visible at any sites, therefore oil and grease were not present.

Table 2. Results of physico-chemical parameters. Results above guidelines are highlighted.

	<u></u>		Quality es (WQOs)	Sample Codes and Results						
Analyte	Units	Estuary	Fresh Water	WC 001 (Down)	NWC 002 (Up)	EC 003 (Up)	DD 005 (Down)			
рН		7.0-8.5	6.5-8.5	6.69	6.77	6.27	5.87			
Turbidity	NTU	0.5-10	6.0-50	6.88	7.94	2.55	1.08			
Electrical Conductivity (EC)	μS/cm	125- 2,200	125- 2,200	943.18	521.74	216.60	193.73			
Dissolved Oxygen (DO)	% Saturation	80-110	85-110	2.08	31.59	19.18	28.65			
Temperature	°C	N/A	N/A	29.05	33.40	28.99	28.23			
Oxidation Reduction Potential (ORP)	mV	N/A	N/A	514.07	231.51	415.10	705.45			

When compared to the WQOs for freshwater and estuaries:

- pH was outside of the WQO ranges at all sampling Sites this sampling round.
- Turbidity was outside of the WQO ranges at Sites 003 and 005 this sampling round.
- EC was within the WQO ranges at all sampling sites this sampling round.
- DO concentrations were outside of the expected range at all sampling sites this sampling round. DO was outside the range at comparison sites in background sampling.

7.2 Laboratory Results

Ammonia, Chlorophyll-a, Filterable Reactive Phosphorous (FRP), Oxides of Nitrogen (NOx), Total Nitrogen and Total Phosphorus (TP) were above the WQOs for some sample sites. Aluminium was also outside WQOs. Parameters which exceeded the WQOs are shown in **Table 3**.

The chain of custody form is included in **Appendix D**. A summary of all lab results with comparison to WQOs is included as **Appendix E**. A full copy of the laboratory results is included as **Appendix F**.

Table 3. Parameters in exceedance of the trigger criteria during sampling. Results above guidelines are highlighted.

		Water (Object (WQ	tives							
Analyte	Unit	Estuary	Fresh Water	WC 001 (Down)	NWC 002 (Up)	EC 003 (Up)	DD 005 (Down)	013 Trip	014 Field	015 Duplicate
Ammonia	mg/L	0.015	0.02	0.044	0.053	<0.005	0.020	<0.005	<0.005	0.051
Chlorophyll-a	mg/m³	4	5	3	10	8	<2	<2	<2	5
Filterable Reactive Phosphorus	mg/L	0.005	0.02	0.01	<0.005	0.03	<0.005	<0.005	<0.005	0.007
Oxides of Nitrogen	mg/L	0.015	0.040	0.04	0.51	<0.005	3.0	<0.005	<0.005	0.04
Total Nitrogen	mg/L	0.30	0.35	0.6	1.4	0.5	4.7	<0.1	<0.1	0.6
Total Phosphorus	mg/L	0.030	0.025	0.05	0.06	0.1	<0.02	<0.02	<0.02	0.05
Aluminium	μg/L	N/A	55	20	40	150	20	<10	<10	10

When compared to the WQOs for Freshwater and Estuaries:

- Ammonia was above the WQOs at Sites 001, 002 and 005. Ammonia was above the WQOs at comparison sites in background sampling. Ammonia decreased at all sites when compared to the previous month.
- Chlorophyll-a was above the WQOs criteria at Sites 002 and 003. Chlorophyll-a results were varied across comparison sites in background sampling. Chlorophyll-a has increased at Sites 001 and 002 and remained the same at Sites 003 and 005.
- FRP was above the WQOs at Sites 001 and 003. FRP decreased at all sites when compared to the
 previous month. FRP results varied across comparison sites in background sampling though were
 lowest at Site 005.
- NOx was above the WQOs criteria at Sites 001, 002 and 005. NOx has decreased at all sites when compared to the previous month.

- TN was above the WQOs criteria at all sites. TN has decreased at all sites when compared to the previous month. TN was above the WQOs at comparison sites in baseline sampling.
- TP was above the WQOs at Sites 001, 002 and 003. TP has decreased at Site 001 and remained the same at Sites 002 and 005 and increased at Site 003 when compared to the previous month. TP was above the WQOs at comparison sites in baseline sampling.
- Aluminium was above the WQO at Site 003. This is similar to the previous month. Aluminium has
 decreased at Sites 002 and 003, and remained the same at Sites 001 and 004 when compared to the
 previous month. Aluminium has been observed at both upstream and downstream sampling sites
 during past sampling rounds.
- All other metals were within estuarine and freshwater criteria this month.
- Demeton was analysed and returned non-detectable results.
- TRH (C₁₀-C₄₀) was not detected at any sample site.

8.0 Quality Assurance and Quality Control

- Parameters analysed in the Trip Blank (013) and Field Blank (014) were below the laboratory detection limits for all analytes.
- The Duplicate Sample (015) was collected at Site 001 and is within acceptable limits for all analytes.

The laboratory QA/QC is included in the results in **Appendix F**. All laboratory QA/QC was within acceptance criteria. Based on the above, the results are considered acceptable for the purposes of the project.

9.0 Summary of Results and Recommendations

- The month had moderate to high rainfall.
- Chlorophyll-a was present above WQOs at Sites 002 and 003. Algal blooms are naturally occurring and are not considered a result of construction activities.
- Nutrients (Ammonia, NOx, TN, TP and FRP) were high and exceeded some water quality parameters
 for some sites. This includes upstream and downstream sites in past sampling events. Exceedances
 in nutrients are therefore considered of natural occurrence.
- Aluminium exceeded WQOs at Site 003 during the month. Metals have been present in upstream and
 downstream sampling sites in previous sampling rounds. Elevation in metals may be due to pH and
 redox changes, microbial mineralisation and naturally occurring sediment transportation. Changes in
 metal concentrations are also likely following heavy rainfall events.
- Elevated nutrients and metals have been observed at all sampling locations including upstream and downstream sites in previous months and during baseline sampling. Therefore, based on the assessment of the December/January water quality data, the Tweed Valley Hospital Project construction activities are unlikely to be adversely impacting the downstream water quality. As such, the current soil and erosion controls implemented on site are considered to be effective.

Kind regards,

Environmental Engineer & Director

fax: (02) 66-218-123 ABN: 82 106 758 123

Appendix A. Site Photos

Appendix B. Calibration certificate for AquaTROLL

ThermoFisher SCIENTIFIC

ELECTROCHEMICAL INSTRUMENT MAINTENANCE & CALIBRATION REPORT

Thermo Fisher Scientific Australia Pty Ltd
ABN 52 058 390 917
5 Caribbean Drive
Scoresby VIC 3179
Phone: 1 300 735 295
Fax: 03 9763 1169

Customer: Ecotechnology Australia PTY Ltd Address: 13 Ewing st

Lismore NSW 2480

Attention:

Make: In-Situ Lab.ID/Assett No. Calibration Date: 27-05-2021 NA AquaTroll 400 741219 / 746352 PO-0063 Next Calibration: Model: Customer O/No. 05-2022 Serial No: Location: Call Number: SV2105240050

Service and Safety Checks	Pass/Fail			
Consult operator regarding performance/problems	Pass			
Check general operation, note additional problems	Pass			
Electrical safety if applicable to AS/NZS 3760:2003	N/A			
Initialization Procedure	Pass			
Instrument Condition	Pass			

Check and Adjust	5-36	Pass/Fail
Probes, leads and connectors		Pass
Keypad / user controls		Pass
Power supply / battery voltage and condition	on .	Pass
Probe(s) performance (response slow or a	cceptable)	Acceptable
Internal and external cleaning		Pass

Calibration/ Accuracy Tests

	Standard Type	Serial Number (if applicable)	Standard Value ± Variation	Displayed Value	Standard Value ± Variation	Displayed Value	Standard Value ± Variation	Displayed Value	Pass/ Fail
~	рH	20945	7.00 ± 0.02	7.00	4.00 ± 0.02	4.00			Pass
>	mV (pH)		0.0 +/- 30	-7.7	175.5 +/- 30	163.1			Pass
>	Slope (pH)		-59.1 +/- 3	-56.93					Pass
•	DO	745063	8.3mg/L @21.5oC	8.27mg/L @21.66oC	0.0	0.03			Pass
	ISE								
•	ORP	20945	234.5mV @22.0oC	234.5 @22.1oC					Pass
~	Conductivity	746352	1413us/cm	1413us/cm					Pass
	TDS								
~	Temp C	746352	22.5	22.47					Pass

Reference Instruments Used									
Model / Part Number	Serial / Batch Number	Expiry / Reference #							
ECBU4BTC1LIT	450/01	Nov 2023							
ECBU7BTC1LIT	450/02	Nov 2023							
179 True RMS multimeter	91610338	Feb 2022							
ECCON1413BT	270/01	Jun 2023							
Zobell A & B (0608/0609)	362211 (A) & 357174 (B)	Oct 2021 (A & B)							
Sodium Sulphite for Zero DO	10640	Aug 2021							
	Model / Part Number ECBU4BTC1LIT ECBU7BTC1LIT 179 True RMS multimeter ECCON1413BT Zobell A & B (0608/0609)	Model / Part Number Serial / Batch Number ECBU4BTC1LIT 450/01 ECBU7BTC1LIT 450/02 179 True RMS multimeter 91610338 ECCON1413BT 270/01 Zobell A & B (0608/0609) 362211 (A) & 357174 (B)							

General Comments and Recommendations on Instrument Condition, Location Details and Parts Used in Service

Instrument inspected and noted operation. Refilled pH reference filling solution and replaced reference junction.

Cleaned sensors and instrument. Calibrated individual sensor parameters. DO Sensor slope of 1.070123. ORP sensor offset of 5.5mV. Conductivity cell constant:0.979

Issued Maintenance Kit and Reference junction kit.

Engineer's Name

Date 27th May 2021

Issue 1

Oct 06

This document must not be reproduced except in full

G0232

Page 1 of 1

Appendix C. Full List of Sampling Analytes

3.7 Proposed Surface Water Quality Sampling Parameters

A summary of the proposed sampling analytes is provided below:

Field

- pH
- Turbidity
- Electrical Conductivity (EC)
- Dissolved Oxygen (DO)
- Temperature
- Oxidation Reduction Potential (ORP)
- Oil and grease

Laboratory

- Total Suspended Solids (TSS)
- Total Dissolved Solids (TDS)
- Major Cations & Hardness
- Ammonia
- Chlorophyll-a
- Filterable Reactive Phosphorus
- Nitrate
- Oxides of Nitrogen
- Total Nitrogen
- · Total Phosphorus
- Aluminium (pH > 6.5) filtered
- Arsenic (filtered)
- Boron (filtered)
- · Cadmium (filtered)
- Chromium (filtered)
- Copper (filtered)
- Cobalt (filtered)
- Lead (filtered)
- Manganese (filtered)
- Mercury (filtered)

- Nickel (filtered)
- · Selenium (filtered)
- · Silver (filtered)
- Zinc (filtered)
- Benzene
- Toluene
- Ethylbenzene
- Xylene Total
- Naphthalene
- Total Recoverable Hydrocarbons (TRH)
- Organochlorine Pesticides (OCP)
 - 4.4'-DDE
 - 4.4'-DDT
 - Aldrin
 - o g-BHC (Lindane)
 - Chlordane
 - o Dieldrin
 - Endosulfan
 - o Endrin
 - Heptachlor
 - Toxaphene
- Organophosphorus Pesticides (OPP)
 - Azinphos-methyl
 - Chlorpyrifos
 - o Demeton-S
 - Diazinon
 - DimethoateFenitrothion
 - Malathion

If a sample returns detectable concentrations of the analytes presented in Table 1, additional analyses may be required to enable comparison against additional trigger criteria or trace potential sources of contaminants. It is cost prohibitive to analyse these parameters unless required.

Table 1 Additional Analysis Requirements

Analyte	Additional Analysis
Total Recoverable Hydrocarbons	TRH Silica-gel Clean-up
Arsenic (filtered)	Arsenic (III) (filtered) Arsenic (V) (filtered)
Chromium (filtered)	Chromium (CrVI) (filtered)

Appendix D. Chain of Custody Form

									_											
[Copyright and Co	ENV <u>ี้</u> เหิดเคย	CHA	IN OF	CUSTO	ΟY	- C	lier	ıt							1	Sydney Lab - Envirolab Services 12 Ashley 5t, Chatswood, NSW 2067 Ph: 02 9910 6200 / sydney@envirolab.com.au				
ENVIROLAB	@mpl	FNVIE	OLAB GR	OUP - Nation	nal ni	none i	number	1300	1 4 2 4	344								Laborato		
Client: Ecoteam		21111	COLIND OIL	Nacion	$\overline{}$						(ie rer	ort titl	e):		16-18 Hayden Crt, Myaree, WA 6154 Ph: 08 9317 2505 / lab@mpl.com.au					
Contact Person:					Client Project Name / Number / Site etc (le report title): SMC009.31 - Tweed Valley Hospital Project							Melbourne Lab - Envirolab Services								
Project Mgr:					PO No		37100031	,	recu v	uncy in	озріса	rrojec			25 Research Drive, Croydon South, VIC 3136					
Sampler:							ote No. :				19SY22	8_Rev 1			Ph: 03 9763 2500 / melbourne@envirolab.com.au					
Address: 13 Ewing	Street						required											Envirol		
Lismore NSW 2480					Note:		standard lab in adva							arges	Р	h: 08 70	087 6800	lorwood) / adela · Envirola	ide@en	virolab.com.au
Phone:		Mob:			<i>apply</i> Addit	ional re	port for	nat: e	sdat /	equis /					2	0a, 10-2	20 Depo	t St, Ban	yo, QLD	4014
		HOD.				omme	<u> </u>		June 7	equio /					'	'h: U/ 32	266 9532	z / brisb	ane@en	virolab.com.au
Email: Testing rquirement	ts - Chlorophyll-a <4 mg/m3, To l.ow level OC	otal Phosphor Ps and OPPs	us <0.025 mg/L,	Silver <0.05 ug/L,	Metal Na/K	s: :Al, / /Ca/M	As, B, Cd, g. Please ts are ba	hold C							ū	Init 7, 17	7 Willes	nvirolab Rd, Berr L / darwi	rimah, N	
	Sample information										Tests	s Requi	red				-50			Comments
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	Type of sample	TRH/BTEXN	Dissolved Metals + low level silver (0.00005 mg/L)	OC/OP + toxaphene + demeton LOW LEVEL	TSS	TDS	Cations + Hardness	Ammonia	Cholorphyll-a	Phosphate (FRP)	Nitrate	Nox	Total N	Total P	Cr6+- AsIII & V HOLD	-	Provide as much information about the sample as you can
1	001 - WC	300 mm		Water	Х	Х	Х	Χ	Х	Х	Х	Х	X	Χ	Χ	Х	X			
2	002 - NWC	150 mm	1	Water	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X		ice ice	
3	003 - EC	300 mm		Water	Х	Х	×	Χ	Х	Х	X	Х	Х	X	Х	Х	X		Ser	8970 8970 6 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4				•															12/21	
4	005 - Dam Drain	150 mm	· · · · · · · · · · · · · · · · · · ·	Water	Х	Х	×	X	Х	Х	Х	Х	X	X	X	X	Х		vira	# # 23 X # # #
S	013	300 mm		Water	Х	X	-X	Х	X	х	X	Х	Х	Х	Х	Х	Х		Ü	表 ら : : OE 部
£	014	300 mm		Water	Х	X	х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х			
7	015	300 mm		Water	Х	X	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	X		78	S S S S S S S S S S
																			(4	Date Received
																		\vdash	7	
						_					T .									
					-							_								
	Please tick the box in	fobserve	ed settled s	ediment pres	ent i	n wat	ter san	nples	is t	o be	inclu	ided	in th	e ext	racti	on a	nd/o	r ana	lysis	
Relinquished by (C		Ecoteam		Received by (Comp								,					b Use		*	
Print Name:		Zac Lyons		Print Name)		Job n	umbe	r: 2.8	\$70	69		Cooli	ng: Io	e / Ic	e pack / None
Date & Time:		19/01/202		Date & Tim			10	000)			eratu		9°C			_	$\overline{}$		act / Broken / None
Signature:		Signature:														/ 1 / 2 / 3 / 4 /(STD)				

Form 302_V004 Issue date: 21 May 2019 Page 1 of 1

Appendix E. Summary of Lab Results compared to WQOs

N/A	N/A	57 3 49 16 190	9 320 320 320 320 42 2 30 11 120 4rients 0.053 10 <0.005	23 1 9.2 3 37 <0.005 8	23 1 4 5 29 0.020 <2 <0.005		013 Trip <5 20 <0.5 <0.5 <0.5 <0.5 <2 <0.005	<pre></pre>	015 Duplicate <5 360 56 3 47 15 180 0.051 5
N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	6 390 ons (dis 57 3 49 16 190 Nu 0.044 3	9 320 ssolved 42 2 30 11 120 utrients 0.053 10 <0.005	28 130) and Ha 23 1 9.2 3 37 <0.005 8 0.03	8 120 ardness 23 1 4 5 29 0.020 <2 <0.005		<5 20 <0.5 <0.5 <0.5 <0.5 <3 <0.005 <2	<5 <5 <0.5 <0.5 <0.5 <0.5 <3 <0.005 <2	<5 360 56 3 47 15 180 0.051 5
N/A N/A N/A N/A N/A N/A N/A N/A	N/A	390 ons (dis 57	320 ssolved 42 2 30 11 120 atrients 0.053 10 <0.005	130) and Ha 23 1 9.2 3 37 <0.005 8 0.03	120 ardness 23 1 4 5 29 0.020 <2 <0.005		20 <0.5 <0.5 <0.5 <0.5 <3 <0.005 <2	<0.5 <0.5 <0.5 <0.5 <3 <0.005 <2	360 56 3 47 15 180 0.051 5
N/A N/A N/A N/A N/A N/A N/A N/A	N/A	390 ons (dis 57	320 ssolved 42 2 30 11 120 atrients 0.053 10 <0.005	130) and Ha 23 1 9.2 3 37 <0.005 8 0.03	120 ardness 23 1 4 5 29 0.020 <2 <0.005		20 <0.5 <0.5 <0.5 <0.5 <3 <0.005 <2	<0.5 <0.5 <0.5 <0.5 <3 <0.005 <2	360 56 3 47 15 180 0.051 5
N/A N/A N/A N/A N/A N/A N/A N/A	N/A	ons (dis 57 3 49 16 190 Nu 0.044 3	42 2 30 11 120 atrients 0.053 10 <0.005	23 1 9.2 3 37 <0.005 8	23 1 4 5 29 0.020 <2 <0.005		<0.5 <0.5 <0.5 <0.5 <0.5 <3 <0.005 <2	<0.5 <0.5 <0.5 <0.5 <0.5 <3 <0.005 <2	56 3 47 15 180 0.051 5
N/A N/A N/A N/A N/A N/A N/A N/A	N/A	ons (dis 57 3 49 16 190 Nu 0.044 3	42 2 30 11 120 atrients 0.053 10 <0.005	23 1 9.2 3 37 <0.005 8	23 1 4 5 29 0.020 <2 <0.005		<0.5 <0.5 <0.5 <0.5 <0.5 <3 <0.005 <2	<0.5 <0.5 <0.5 <0.5 <0.5 <3 <0.005 <2	56 3 47 15 180
N/A	N/A N/A N/A N/A N/A 0.02 5 0.02	57 3 49 16 190 Nu 0.044 3	42 2 30 11 120 atrients 0.053 10 <0.005	23 1 9.2 3 37 <0.005 8	23 1 4 5 29 0.020 <2 <0.005		<0.5 <0.5 <0.5 <3 <0.005 <2	<0.5 <0.5 <0.5 <3 <0.005 <2	3 47 15 180 0.051 5
N/A N/A N/A N/A N/A 0.015 3 4 0.005	N/A N/A N/A N/A 0.02 5 0.02	3 49 16 190 Nu 0.044 3	2 30 11 120 atrients 0.053 10 <0.005	1 9.2 3 37 <0.005 8	1 4 5 29 0.020 <2 <0.005		<0.5 <0.5 <0.5 <3 <0.005 <2	<0.5 <0.5 <0.5 <3 <0.005 <2	3 47 15 180 0.051 5
N/A N/A N/A N/A 0.015 4 0.005 N/A	N/A N/A N/A 0.02 5 0.02	49 16 190 Nu 0.044 3	30 11 120 utrients 0.053 10 <0.005	9.2 3 37 <0.005 8	4 5 29 0.020 <2 <0.005		<0.5 <0.5 <3 <0.005 <2	<0.5 <0.5 <3 <0.005 <2	47 15 180 0.051 5
N/A N/A 0.015 3 4 0.005	N/A N/A 0.02 5 0.02 N/A	16 190 Nt 0.044 3 0.01	11 120 atrients 0.053 10 <0.005	3 37 <0.005 8 0.03	5 29 0.020 <2 <0.005		<0.5 <3 <0.005 <2	<0.5 <3 <0.005 <2	15 180 0.051 5
N/A 0.015 4 0.005 N/A	0.02 5 0.02 N/A	190 Nu 0.044 3 0.01	120 utrients 0.053 10 <0.005	<0.005 8 0.03	0.020 <2 <0.005		<0.005 <2	<0.005 <2	180 0.051 5
- 0.015 3 4 - 0.005 - N/A	0.02 5 0.02 N/A	0.044 3 0.01	0.053 10 <0.005	<0.005 8 0.03	0.020 <2 <0.005		<0.005 <2	<0.005	0.051
0.005 N/A	5 0.02 N/A	0.044 3 0.01	0.053 10 <0.005	0.03	<2 <0.005		<2	<2	5
0.005 N/A	5 0.02 N/A	0.01	10 <0.005	0.03	<2 <0.005		<2	<2	5
0.005 N/A	0.02 N/A	0.01	<0.005	0.03	<0.005				
_ N/A	N/A						<0.005	<0.005	0.007
		0.03	0.50					1	
				<0.005	3.0		<0.005	<0.005	0.03
0.015	0.040	0.04	0.51	<0.005	3.0		<0.005	<0.005	0.04
0.30	0.35	0.6	1.4	0.5	4.7		<0.1	<0.1	0.6
0.030	0.025	0.05	0.06	0.1	<0.02		<0.02	<0.02	0.05
Me	tals – A	II metal	s are Di	ssolved	Metals		l		
N/A	55	20	40	150	20		<10	<10	10
N/A	13	1	<1	<1	<1		<1	<1	<1
N/A	370	100	100	40	50		<20	<20	100
	0.2	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	<0.1
	1.0	<1	<1	<1	<1		<1	<1	<1
	1.4	<1	<1	<1	<1		<1	<1	<1
	N/A	<1	<1	<1	<1		<1	<1	<1
	3.4	<1	<1	<1	<1		<1	<1	28
	1,900	430	190	56	51		<1	<1	410
	0.6	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05
	11	<1	<1	<1	<1		<1	<1	<1
	11	<1	2	<1	<1		<1	<1	<1
	8.0	3	2	2	4		<1	<1	4
	0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05
	4.4 1.3 1.0 4.4 N/A 0.4 70 N/A	4.4 1.0 1.3 1.4 1.0 N/A 1.0 N/A 1.0 N/A 1.0 N/A 1.0 N/A 1.900 1.0 0.4 0.6 1.0 N/A 1.0 N/A 1.1 N/A 1.1 N/A 1.1 8.0	. 4.4 1.0 <1 . 1.3 1.4 <1 . 1.0 N/A <1 . 4.4 3.4 <1 . N/A 1,900 430 . 0.4 0.6 <0.05 . 70 11 <1 . N/A 11 <1 . N/A 15 8.0 3	. 4.4 1.0 <1 <1 . 1.3 1.4 <1 <1 . 1.0 N/A <1 <1 . 4.4 3.4 <1 <1 . N/A 1,900 430 190 . 0.4 0.6 <0.05 <0.05 . 70 11 <1 <1 . N/A 11 <1 2 . N/A 15 8.0 3 2	4.4 1.0 <1	4.4 1.0 <1	4.4 1.0 <1	4.4 1.0 <1	4.4 1.0 <1

		Water (Object (WC	ctives	Sample Codes							
Analyte	Unit	Estuary	Fresh Water	WC 001	NWC 002	EC 003	DD 005		013 Trip	014 Field	015 Duplicate
Hydrocarbor	าร										
Toluene	mg/L	0.70	0.95	<1	<1	<1	<1		<1	<1	<1
Ethylbenzene	mg/L	N/A	N/A	<1	<1	<1	<1		<1	<1	<1
Xylene	mg/L	N/A	N/A	<1	<1	<1	<1		<1	<1	<1
Naphthalene	mg/L	N/A	0.55	<1	<1	<1	<1		<1	<1	<1
TRH C ₆ - C ₁₀	mg/L	0.07	0.016	<10	<10	<10	<10		<10	<10	<10
TRH C ₁₀ - C ₁₆	mg/L	N/A	N/A	<50	<50	<50	<50		<50	64	<50
TRH C ₁₆ - C ₃₄	mg/L	N/A	N/A	<100	<100	<100	<100		<100	<100	<100
TRH >C ₃₄ - C ₄₀	mg/L	N/A	N/A	<100	<100	<100	<100		<100	<100	<100
TRH C ₆ -C ₁₀ less BTEX (F1)	mg/L	N/A	N/A	<10	<10	<10	<10		<10	<10	<10
TRH >C ₁₀ -C ₁₆ less Naphthalene (F2)	mg/L	N/A	N/A	<50	<50	<50	<50		<50	<50	<50
Organochlorine Pesticides (OCP)											
4.4'-DDE	μg/L	N/A	N/A	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01
4.4'-DDT	μg/L	N/A	0.01	<0.006	<0.006	<0.006	<0.006		<0.006	<0.006	<0.006
Aldrin	μg/L	N/A	N/A	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01
g-BHC	μg/L	N/A	0.2	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01
Chlordane	μg/L	N/A	0.08	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01
Dieldrin	μg/L	N/A	N/A	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01
Endosulfan	μg/L	0.01	0.2	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01
Endrin	μg/L	0.02	0.008	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01
Heptachlor	μg/L	N/A	0.09	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01
Toxaphene	μg/L	N/A	0.2	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2	<0.2
Organophos	phoru	s Pestic	ides (O	PP)							
Azinphos- methyl	μg/L	N/A	0.02	<0.02	<0.02	<0.02	<0.02		<0.02	<0.02	<0.02
Chlorpyriphos	μg/L	0.009	0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01
Demeton-S	μg/L	N/A	N/A	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2	<0.2
Diazinon	μg/L	N/A	0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01
Dimethoate	μg/L	N/A	0.15	<0.15	<0.15	<0.15	<0.15		<0.15	<0.15	<0.15
Fenitrothion	μg/L	N/A	0.2	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2	<0.2
Malathion	μg/L	N/A	0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05

Appendix F. Full Laboratory Results

Envirolab Services Pty Ltd

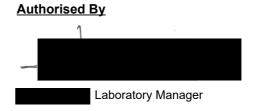
ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 287069

Client Details	
Client	Ecoteam
Attention	
Address	13 Ewing Street, Lismore, NSW, 2480

Sample Details	
Your Reference	SMC009.31 - Tweed Valley Hospital Project
Number of Samples	7 Water
Date samples received	21/01/2022
Date completed instructions received	31/01/2022

Analysis Details


Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details						
Date results requested by	31/01/2022					
Date of Issue	02/02/2022					
Reissue Details	This report replaces R00 created on 31/01/2022 due to: revised report with repeated results for TDS & NOx sample #5 reported.					
NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with ISO/IE	EC 17025 - Testing. Tests not covered by NATA are denoted with *					

vTRH(C6-C10)/BTEXN in Water							
Our Reference		287069-1	287069-2	287069-3	287069-4	287069-5	
Your Reference	UNITS	001-WC	002 - NWC	003 - EC	005 - Dam Drain	013	
Depth		300	150	300	150	300	
Type of sample		Water	Water	Water	Water	Water	
Date extracted	-	21/01/2022	21/01/2022	21/01/2022	21/01/2022	21/01/2022	
Date analysed	-	21/01/2022	21/01/2022	21/01/2022	21/01/2022	21/01/2022	
TRH C ₆ - C ₉	μg/L	<10	<10	<10	<10	<10	
TRH C ₆ - C ₁₀	μg/L	<10	<10	<10	<10	<10	
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	<10	<10	<10	
Benzene	μg/L	<1	<1	<1	<1	<1	
Toluene	μg/L	<1	<1	1	<1	<1	
Ethylbenzene	μg/L	<1	<1	<1	<1	<1	
m+p-xylene	μg/L	<2	<2	<2	<2	<2	
o-xylene	μg/L	<1	<1	<1	<1	<1	
Naphthalene	μg/L	<1	<1	<1	<1	<1	
Surrogate Dibromofluoromethane	%	96	101	102	101	101	
Surrogate toluene-d8	%	96	99	101	101	101	
Surrogate 4-BFB	%	99	88	87	86	86	

vTRH(C6-C10)/BTEXN in Water			
Our Reference		287069-6	287069-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date extracted	-	21/01/2022	21/01/2022
Date analysed	-	21/01/2022	21/01/2022
TRH C ₆ - C ₉	μg/L	<10	<10
TRH C ₆ - C ₁₀	μg/L	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10
Benzene	μg/L	<1	<1
Toluene	μg/L	<1	<1
Ethylbenzene	μg/L	<1	<1
m+p-xylene	μg/L	<2	<2
o-xylene	μg/L	<1	<1
Naphthalene	μg/L	<1	<1
Surrogate Dibromofluoromethane	%	101	100
Surrogate toluene-d8	%	101	98
Surrogate 4-BFB	%	87	87

svTRH (C10-C40) in Water						
Our Reference		287069-1	287069-2	287069-3	287069-4	287069-5
Your Reference	UNITS	001-WC	002 - NWC	003 - EC	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	24/01/2022	24/01/2022	24/01/2022	24/01/2022	24/01/2022
Date analysed	-	25/01/2022	25/01/2022	25/01/2022	25/01/2022	25/01/2022
TRH C ₁₀ - C ₁₄	μg/L	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	μg/L	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	μg/L	<100	<100	<100	<100	<100
TRH >C ₁₀ - C ₁₆	μg/L	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	<50	<50	<50	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100	<100	<100	<100	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	72	88	82	92	82

svTRH (C10-C40) in Water			
Our Reference		287069-6	287069-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date extracted	-	24/01/2022	24/01/2022
Date analysed	-	25/01/2022	25/01/2022
TRH C ₁₀ - C ₁₄	μg/L	<50	<50
TRH C ₁₅ - C ₂₈	μg/L	<100	<100
TRH C ₂₉ - C ₃₆	μg/L	<100	<100
TRH >C ₁₀ - C ₁₆	μg/L	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100
Surrogate o-Terphenyl	%	80	70

OCPs in Water - Low Level						
Our Reference		287069-1	287069-2	287069-3	287069-4	287069-5
Your Reference	UNITS	001-WC	002 - NWC	003 - EC	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	24/01/2022	24/01/2022	24/01/2022	24/01/2022	24/01/2022
Date analysed	-	24/01/2022	24/01/2022	24/01/2022	24/01/2022	24/01/2022
alpha-BHC	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
нсв	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
beta-BHC	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
gamma-BHC	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Heptachlor	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
delta-BHC	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Aldrin	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Heptachlor Epoxide	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
gamma-Chlordane	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
alpha-Chlordane	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Endosulfan I	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
pp-DDE	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Dieldrin	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Endrin	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Endosulfan II	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
pp-DDD	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Endrin Aldehyde	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
pp-DDT	μg/L	<0.006	<0.006	<0.006	<0.006	<0.006
Endosulfan Sulphate	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Methoxychlor	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Surrogate TCMX	%	72	85	72	80	79

OCPs in Water - Low Level			
Our Reference		287069-6	287069-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date extracted	-	24/01/2022	24/01/2022
Date analysed	-	24/01/2022	24/01/2022
alpha-BHC	μg/L	<0.01	<0.01
нсв	μg/L	<0.01	<0.01
beta-BHC	μg/L	<0.01	<0.01
gamma-BHC	μg/L	<0.01	<0.01
Heptachlor	μg/L	<0.01	<0.01
delta-BHC	μg/L	<0.01	<0.01
Aldrin	μg/L	<0.01	<0.01
Heptachlor Epoxide	μg/L	<0.01	<0.01
gamma-Chlordane	μg/L	<0.01	<0.01
alpha-Chlordane	μg/L	<0.01	<0.01
Endosulfan I	μg/L	<0.01	<0.01
pp-DDE	μg/L	<0.01	<0.01
Dieldrin	μg/L	<0.01	<0.01
Endrin	μg/L	<0.01	<0.01
Endosulfan II	μg/L	<0.01	<0.01
pp-DDD	μg/L	<0.01	<0.01
Endrin Aldehyde	μg/L	<0.01	<0.01
pp-DDT	μg/L	<0.006	<0.006
Endosulfan Sulphate	μg/L	<0.01	<0.01
Methoxychlor	μg/L	<0.01	<0.01
Surrogate TCMX	%	74	76

OP in water LL ANZECCF/ADWG						
Our Reference		287069-1	287069-2	287069-3	287069-4	287069-5
Your Reference	UNITS	001-WC	002 - NWC	003 - EC	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	24/01/2022	24/01/2022	24/01/2022	24/01/2022	24/01/2022
Date analysed	-	24/01/2022	24/01/2022	24/01/2022	24/01/2022	24/01/2022
Dichlorovos	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Dimethoate	μg/L	<0.15	<0.15	<0.15	<0.15	<0.15
Diazinon	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Chlorpyriphos-methyl	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Methyl Parathion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Ronnel	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Fenitrothion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyriphos	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Parathion	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Bromophos ethyl	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Ethion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Surrogate TCMX	%	72	85	72	80	79

OP in water LL ANZECCF/ADWG			
Our Reference		287069-6	287069-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date extracted	-	24/01/2022	24/01/2022
Date analysed	-	24/01/2022	24/01/2022
Dichlorovos	μg/L	<0.2	<0.2
Dimethoate	μg/L	<0.15	<0.15
Diazinon	μg/L	<0.01	<0.01
Chlorpyriphos-methyl	μg/L	<0.2	<0.2
Methyl Parathion	μg/L	<0.2	<0.2
Ronnel	μg/L	<0.2	<0.2
Fenitrothion	μg/L	<0.2	<0.2
Malathion	μg/L	<0.05	<0.05
Chlorpyriphos	μg/L	<0.01	<0.01
Parathion	μg/L	<0.01	<0.01
Bromophos ethyl	μg/L	<0.2	<0.2
Ethion	μg/L	<0.2	<0.2
Azinphos-methyl (Guthion)	μg/L	<0.02	<0.02
Surrogate TCMX	%	74	76

Miscellaneous Organics - water							
Our Reference		287069-1	287069-2	287069-3	287069-4	287069-5	
Your Reference	UNITS	001-WC	002 - NWC	003 - EC	005 - Dam Drain	013	
Depth		300	150	300	150	300	
Type of sample		Water	Water	Water	Water	Water	
Date prepared	-	25/01/2022	25/01/2022	25/01/2022	25/01/2022	25/01/2022	
Date analysed	-	25/01/2022	25/01/2022	25/01/2022	25/01/2022	25/01/2022	
Toxaphene*	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	
Demeton-O	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	
Demeton-S	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	
Surrogate p-Terphenyl-d ₁₄	%	125	123	121	130	130	

Miscellaneous Organics - water			
Our Reference		287069-6	287069-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date prepared	-	25/01/2022	25/01/2022
Date analysed	-	25/01/2022	25/01/2022
Toxaphene*	μg/L	<0.2	<0.2
Demeton-O	μg/L	<0.2	<0.2
Demeton-S	μg/L	<0.2	<0.2
Surrogate p-Terphenyl-d ₁₄	%	122	114

HM in water - dissolved						
Our Reference		287069-1	287069-2	287069-3	287069-4	287069-5
Your Reference	UNITS	001-WC	002 - NWC	003 - EC	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	25/01/2022	25/01/2022	25/01/2022	25/01/2022	25/01/2022
Date analysed	-	25/01/2022	25/01/2022	25/01/2022	25/01/2022	25/01/2022
Aluminium-Dissolved	μg/L	20	40	150	20	<10
Arsenic-Dissolved	μg/L	1	<1	<1	<1	<1
Boron-Dissolved	μg/L	100	100	40	50	<20
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1	<1	<1	<1
Copper-Dissolved	μg/L	<1	<1	<1	<1	<1
Cobalt-Dissolved	μg/L	<1	<1	<1	<1	<1
Lead-Dissolved	μg/L	<1	<1	<1	<1	<1
Manganese-Dissolved	μg/L	430	190	56	51	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	<1	<1	<1	<1	<1
Selenium-Dissolved	μg/L	<1	2	<1	<1	<1
Zinc-Dissolved	μg/L	3	2	2	4	<1
Silver-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05

HM in water - dissolved			
Our Reference		287069-6	287069-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date prepared	-	25/01/2022	25/01/2022
Date analysed	-	25/01/2022	25/01/2022
Aluminium-Dissolved	μg/L	<10	10
Arsenic-Dissolved	μg/L	<1	<1
Boron-Dissolved	μg/L	<20	100
Cadmium-Dissolved	μg/L	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1
Copper-Dissolved	μg/L	<1	<1
Cobalt-Dissolved	μg/L	<1	<1
Lead-Dissolved	μg/L	<1	28
Manganese-Dissolved	μg/L	<1	410
Mercury-Dissolved	μg/L	<0.05	<0.05
Nickel-Dissolved	μg/L	<1	<1
Selenium-Dissolved	μg/L	<1	<1
Zinc-Dissolved	μg/L	<1	4
Silver-Dissolved	μg/L	<0.05	<0.05

Envirolab Reference: 287069

Revision No: R01

Metals in Waters - Acid extractable						
Our Reference		287069-1	287069-2	287069-3	287069-4	287069-5
Your Reference	UNITS	001-WC	002 - NWC	003 - EC	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	24/01/2022	24/01/2022	24/01/2022	24/01/2022	24/01/2022
Date analysed	-	24/01/2022	24/01/2022	24/01/2022	24/01/2022	24/01/2022
Phosphorus - Total	mg/L	0.05	0.06	0.1	<0.02	<0.02

Metals in Waters - Acid extractable			
Our Reference		287069-6	287069-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date prepared	-	24/01/2022	24/01/2022
Date analysed	-	24/01/2022	24/01/2022
Phosphorus - Total	mg/L	<0.02	0.05

Cations in water Dissolved						
Our Reference		287069-1 287069-2		287069-3	287069-4	287069-5
Your Reference	UNITS	001-WC	002 - NWC	003 - EC	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date digested	-	24/01/2022	24/01/2022	24/01/2022	24/01/2022	24/01/2022
Date analysed	-	25/01/2022	25/01/2022	25/01/2022	25/01/2022	25/01/2022
Sodium - Dissolved	mg/L	57	42	23	23	<0.5
Potassium - Dissolved	mg/L	3	2	1	1	<0.5
Calcium - Dissolved	mg/L	49	30	9.2	4	<0.5
Magnesium - Dissolved	mg/L	16	11	3	5	<0.5
Hardness	mgCaCO 3 /L	190	120	37	29	<3

Cations in water Dissolved			
Our Reference		287069-6	287069-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date digested	-	24/01/2022	24/01/2022
Date analysed	-	25/01/2022	25/01/2022
Sodium - Dissolved	mg/L	<0.5	56
Potassium - Dissolved	mg/L	<0.5	3
Calcium - Dissolved	mg/L	<0.5	47
Magnesium - Dissolved	mg/L	<0.5	15
Hardness	mgCaCO 3 /L	<3	180

Miscellaneous Inorganics						
Our Reference		287069-1	287069-1 287069-2		287069-4	287069-5
Your Reference	UNITS	001-WC	002 - NWC	003 - EC	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	24/01/2022	24/01/2022	24/01/2022	24/01/2022	24/01/2022
Date analysed	-	24/01/2022	24/01/2022	24/01/2022	24/01/2022	24/01/2022
Total Suspended Solids	mg/L	6	9	28	8	<5
Total Dissolved Solids (grav)	mg/L	390	320	130	120	<5
Ammonia as N in water	mg/L	0.044	0.053	<0.005	0.020	<0.005
Chlorophyll a	mg/m³	3	10	8	<2	<2
Phosphate as P in water	mg/L	0.01	<0.005	0.03	<0.005	<0.005
Nitrate as N in water	mg/L	0.03	0.50	<0.005	3.0	<0.005
NOx as N in water	mg/L	0.04	0.51	<0.005	3.0	<0.005
Total Nitrogen in water	mg/L	0.6	1.4	0.5	4.7	<0.1

Miscellaneous Inorganics			
Our Reference		287069-6	287069-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date prepared	-	24/01/2022	24/01/2022
Date analysed	-	24/01/2022	24/01/2022
Total Suspended Solids	mg/L	<5	<5
Total Dissolved Solids (grav)	mg/L	<5	360
Ammonia as N in water	mg/L	<0.005	0.051
Chlorophyll a	mg/m³	<2	5
Phosphate as P in water	mg/L	<0.005	0.007
Nitrate as N in water	mg/L	<0.005	0.03
NOx as N in water	mg/L	<0.005	0.04
Total Nitrogen in water	mg/L	<0.1	0.6

Method ID	Methodology Summary
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.
Inorg-019	Suspended Solids - determined gravimetricially by filtration of the sample. The samples are dried at 104+/-5°C.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCl extraction.
Inorg-060	Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
INORG-119	Chlorophyll A based on APHA 10200 H latest edition.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALITY CONTI	ROL: vTRH(C6-C10)/E	BTEXN in Water			Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W6	[NT]
Date extracted	-			21/01/2022	3	21/01/2022	24/01/2022		21/01/2022	
Date analysed	-			21/01/2022	3	21/01/2022	24/01/2022		21/01/2022	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	3	<10	<10	0	101	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	3	<10	<10	0	101	
Benzene	μg/L	1	Org-023	<1	3	<1	<1	0	100	
Toluene	μg/L	1	Org-023	<1	3	1	1	0	99	
Ethylbenzene	μg/L	1	Org-023	<1	3	<1	<1	0	101	
m+p-xylene	μg/L	2	Org-023	<2	3	<2	<2	0	102	
o-xylene	μg/L	1	Org-023	<1	3	<1	<1	0	101	
Naphthalene	μg/L	1	Org-023	<1	3	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	102	3	102	98	4	100	
Surrogate toluene-d8	%		Org-023	100	3	101	98	3	100	
Surrogate 4-BFB	%		Org-023	88	3	87	102	16	100	

QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			24/01/2022	[NT]		[NT]	[NT]	24/01/2022	
Date analysed	-			24/01/2022	[NT]		[NT]	[NT]	24/01/2022	
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	86	
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	89	
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	125	
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	86	
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	89	
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	125	
Surrogate o-Terphenyl	%		Org-020	77	[NT]	[NT]	[NT]	[NT]	84	[NT]

QUALITY	CONTROL: OCF	Ps in Wate	er - Low Level			Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]	
Date extracted	-			24/01/2022	[NT]		[NT]	[NT]	24/01/2022		
Date analysed	-			24/01/2022	[NT]		[NT]	[NT]	24/01/2022		
alpha-BHC	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	92		
HCB	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	[NT]		
beta-BHC	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	85		
gamma-BHC	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	[NT]		
Heptachlor	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	109		
delta-BHC	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	[NT]		
Aldrin	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	113		
Heptachlor Epoxide	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	108		
gamma-Chlordane	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	[NT]		
alpha-Chlordane	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	[NT]		
Endosulfan I	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	[NT]		
pp-DDE	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	102		
Dieldrin	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	110		
Endrin	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	90		
Endosulfan II	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	[NT]		
pp-DDD	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	94		
Endrin Aldehyde	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	[NT]		
pp-DDT	μg/L	0.006	Org-022	<0.006	[NT]		[NT]	[NT]	[NT]		
Endosulfan Sulphate	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	82		
Methoxychlor	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	[NT]		
Surrogate TCMX	%		Org-022/025	85	[NT]		[NT]	[NT]	84		

QUALITY CONTR	QUALITY CONTROL: OP in water LL ANZECCF/ADWG								Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]	
Date extracted	-			24/01/2022	[NT]		[NT]	[NT]	24/01/2022		
Date analysed	-			24/01/2022	[NT]		[NT]	[NT]	24/01/2022		
Dichlorovos	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	70		
Dimethoate	μg/L	0.15	Org-022/025	<0.15	[NT]		[NT]	[NT]	[NT]		
Diazinon	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	[NT]		
Chlorpyriphos-methyl	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Methyl Parathion	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Ronnel	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	106		
Fenitrothion	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	75		
Malathion	μg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	95		
Chlorpyriphos	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	103		
Parathion	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	74		
Bromophos ethyl	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Ethion	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	74		
Azinphos-methyl (Guthion)	μg/L	0.02	Org-022/025	<0.02	[NT]		[NT]	[NT]	[NT]		
Surrogate TCMX	%		Org-022/025	85	[NT]		[NT]	[NT]	84		

QUALITY CONT	QUALITY CONTROL: Miscellaneous Organics - water							Duplicate				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]		
Date prepared	-			25/01/2022	4	25/01/2022	25/01/2022		25/01/2022			
Date analysed	-			25/01/2022	4	25/01/2022	25/01/2022		25/01/2022			
Toxaphene*	μg/L	0.2	Org-022/025	<0.2	4	<0.2	<0.2	0	[NT]			
Demeton-O	μg/L	0.2	Org-022/025	<0.2	4	<0.2	<0.2	0	[NT]			
Demeton-S	μg/L	0.2	Org-022/025	<0.2	4	<0.2	<0.2	0	[NT]			
Surrogate p-Terphenyl-d ₁₄	%		Org-022/025	81	4	130	127	2	102	[NT]		

Envirolab Reference: 287069

Revision No: R01

QUALITY CO	ONTROL: HI	/l in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
Date prepared	-			25/01/2022	[NT]		[NT]	[NT]	25/01/2022	
Date analysed	-			25/01/2022	[NT]		[NT]	[NT]	25/01/2022	
Aluminium-Dissolved	μg/L	10	Metals-022	<10	[NT]		[NT]	[NT]	119	
Arsenic-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	111	
Boron-Dissolved	μg/L	20	Metals-022	<20	[NT]		[NT]	[NT]	115	
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	109	
Chromium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	111	
Copper-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	107	
Cobalt-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	108	
Lead-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	105	
Manganese-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	113	
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	102	
Nickel-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	108	
Selenium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	103	
Zinc-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	110	
Silver-Dissolved	μg/L	0.05	Metals-022	<0.05	[NT]		[NT]	[NT]	94	

QUALITY CONTRO		Duplicate				Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			25/01/2022	4	24/01/2022	24/01/2022		25/01/2022	[NT]
Date analysed	-			25/01/2022	4	24/01/2022	24/01/2022		25/01/2022	[NT]
Phosphorus - Total	mg/L	0.02	Metals-020	<0.02	4	<0.02	<0.02	0	99	[NT]

Envirolab Reference: 287069

Revision No: R01

Units	PQL	NA - 4ll						Spike Recovery %	
		Method	Blank	#	Base	Dup.	RPD	LCS-W1	287069-2
-			24/01/2022	1	24/01/2022	24/01/2022		24/01/2022	24/01/2022
-			25/01/2022	1	25/01/2022	25/01/2022		25/01/2022	25/01/2022
mg/L	0.5	Metals-020	<0.5	1	57	57	0	100	70
mg/L	0.5	Metals-020	<0.5	1	3	3	0	88	87
mg/L	0.5	Metals-020	<0.5	1	49	48	2	89	88
mg/L	0.5	Metals-020	<0.5	1	16	15	6	92	93
ngCaCO3/L	3			1	190	180	5	[NT]	[NT]
ng	mg/L mg/L mg/L	mg/L 0.5 mg/L 0.5 mg/L 0.5 mg/L 0.5	mg/L 0.5 Metals-020 mg/L 0.5 Metals-020 mg/L 0.5 Metals-020 mg/L 0.5 Metals-020	mg/L 0.5 Metals-020 <0.5	mg/L 0.5 Metals-020 <0.5	mg/L 0.5 Metals-020 <0.5	mg/L 0.5 Metals-020 <0.5	mg/L 0.5 Metals-020 <0.5	mg/L 0.5 Metals-020 <0.5

QUALITY COI	NTROL: Mis	cellaneou	is Inorganics			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W6	287069-2
Date prepared	-			24/01/2022	1	24/01/2022	24/01/2022		24/01/2022	24/01/2022
Date analysed	-			24/01/2022	1	24/01/2022	24/01/2022		24/01/2022	24/01/2022
Total Suspended Solids	mg/L	5	Inorg-019	<5	1	6	7	15	91	[NT]
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	1	390	400	3	111	[NT]
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	0.044	0.050	13	101	91
Chlorophyll a	mg/m³	2	INORG-119	<2	1	3	[NT]		85	[NT]
Phosphate as P in water	mg/L	0.005	Inorg-060	<0.005	1	0.01	0.01	0	111	105
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.03	0.04	29	92	120
NOx as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.04	0.05	22	92	120
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127	<0.1	1	0.6	0.5	18	92	102

QUALITY CC		Duplicate				Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	287069-5
Date prepared	-			[NT]	[NT]		[NT]	[NT]		24/01/2022
Date analysed	-			[NT]	[NT]		[NT]	[NT]		24/01/2022
Nitrate as N in water	mg/L	0.005	Inorg-055	[NT]	[NT]		[NT]	[NT]		109
NOx as N in water	mg/L	0.005	Inorg-055	[NT]	[NT]		[NT]	[NT]		109

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.