

Wednesday 6 December 2023

Environmental Engineer & Director

mob:

office: (02) 66-215-123 fax: (02) 66-218-123

ABN: 82 106 758 123

To: Site Engineer, Lendlease
Tweed Valley Hospital Project

Re: Surface Water Quality Monitoring Results and Report for the Tweed Valley Hospital Project
Reporting period: 16 October 2023 to 14 November 2023

1.0 INTRODUCTION

Ecoteam is engaged to undertake monthly and event-based surface water monitoring on behalf of Lendlease Building as part of the main works for the Tweed Valley Hospital Project. This report presents results from the 53rd round of monthly sampling. This report satisfies the requirements of the SSD2 conditions. No controlled or uncontrolled releases from the sediment basins occurred during the reporting period.

2.0 PROJECT AIMS AND SAMPLING OBJECTIVES

The surface water monitoring objectives for the site are to detect changes during construction in receiving water quality resulting from the project. Stormwater discharges potentially contain increased sediment loads, nutrients, total and dissolved metals, hydrocarbons, or other contaminants such as pesticides. Baseline water quality data was performed on 19 and 26 November and 19 December 2018 to record water quality conditions under the existing land use prior to construction (Lendlease Building, 2019).

3.0 WEATHER CONDITIONS

Total rainfall in the period prior to sampling (18 September 2023 to 15 October 2023) was 216.6 mm with the highest 24-hour rainfall occurring on 5 November, being 76.8 mm (Kingscliff BOM Station 058137).

4.0 SAMPLING LOCATIONS

Samples were collected from four of the five monthly sampling Sites (001 - 003 and 005). Site 004 has been infilled and has been removed from ongoing sampling rounds. Control samples were also collected and analysed (013 - 015). Sample codes and corresponding sampling locations are shown in **Table 1** and **Figure 1**. Site photos taken on the day of sampling are included in **Appendix A**. During sampling, Site 002 was noted to be flowing South. Therefore, Site 002 will be assessed as an upstream sample site.

Table 1. Monthly sampling sites, control samples, sample codes, and applicable WQOs.

Sample Codes	Sampling Site Name	Short Name	WQOs
001	West Creek (Downstream)	WC	Estuarine
002	North West Creek (Variable)	NWC	Estuarine
003	East Creek (Upstream)	EC	Freshwater
004	Dam (Downstream)	Dam	Freshwater
005	Dam Drain (Downstream)	DD	Freshwater
013	Trip Blank	Trip	NA
014	Field Blank	Field	NA
015	Field Duplicate	Duplicate	NA

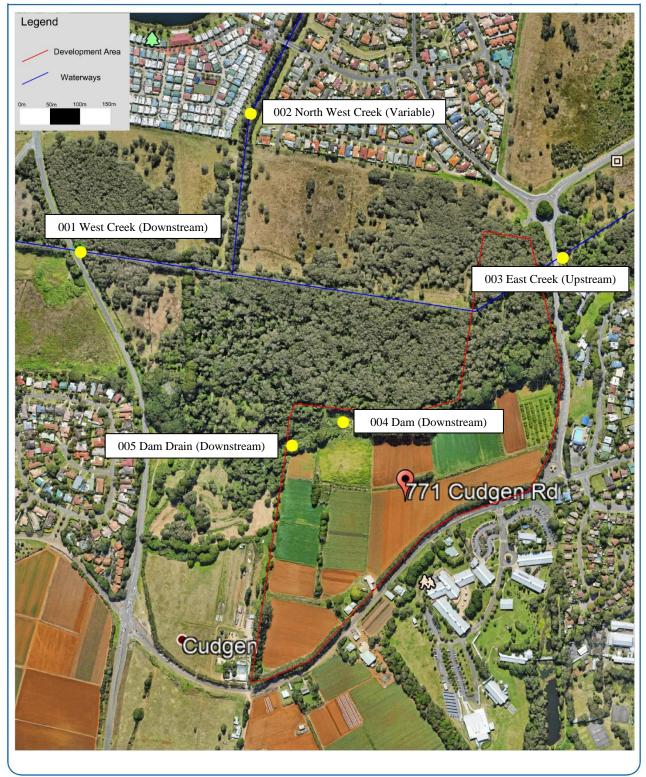


Figure 1. Map of monthly sampling sites (Source: Google Earth).

5.0 SAMPLING METHODOLOGY

Sampling was undertaken by Jeffery Presbury on Wednesday 15 November 2023. The weather was sunny. In-situ, physico-chemical measurements were collected using a AquaTROLL multi-parameter probe, and Turbidity was measured using a Turbimeter Plus turbidity meter. Oil and grease were visually assessed. The calibration certificate for the AquaTROLL is included in **Appendix B**. The Turbimeter Plus is calibrated before each sampling round. Water quality samples were collected at 300 mm below the surface where possible. Samples were collected from the bank using an extension pole.

Samples were filtered and preserved on-site where necessary, stored on ice, and couriered overnight to the NATA-accredited Envirolab in Sydney. Trip blank samples (013) were sent from Envirolab and transported to all sites, then returned to Envirolab with the field samples. The field blank samples (014) were assessed at Site 005. Duplicate samples (015) were collected at Site 002 and were filtered and preserved as required. Field and trip blanks were filled with deionized water and do not represent water quality from the site. A full list of analytes for the project is included in **Appendix C**.

6.0 ASSESSMENT CRITERIA

Water quality results were compared against the Water Quality Objectives (WQO) in the following guidelines:

- NSW Water Quality Objectives for the Tweed River Catchment for Aquatic Ecosystems (Tweed 2006) - Trigger criteria for estuaries.
- Australian and New Zealand guidelines for fresh and marine water quality (ANZECC 2000) –
 Trigger values for freshwater (level of protection 95% species).

7.0 RESULTS

7.1 Physico-chemical Results

In situ, physico-chemical sampling results with comparison to WQOs are shown in **Table 2**. There were no surface sheens visible at any sites, therefore oil and grease were not present.

Table 2. Results of physico-chemical parameters. The results above guidelines are highlighted.

Tubio 2. Troodito	1 7	Water	Quality es (WQOs)	Sample Codes and Results							
Analyte	Units	Estuary	Fresh Water	WC 001 (Down)	NWC 002 (Up)	EC 003 (Up)	DD 005 (Down)				
рН		7.0-8.5	6.5-8.5	6.55	6.50	6.38	6.13				
Turbidity	NTU	0.5-10	6.0-50	7.09	13.0	7.49	0.96				
Electrical Conductivity (EC)	μS/cm	125- 2,200	125- 2,200	688.62	467.5	297.7	142.12				
Dissolved Oxygen (DO)	% Saturation	80-110	85-110	0.00	22.71	0.46	11.35				
Temperature	°C	N/A	N/A	22.4	26.47	23.47	22.72				
Oxidation- Reduction Potential (ORP)	mV	N/A	N/A	-13.2	59.7	1.7	1222.2				

When compared to the WQOs for freshwater and estuaries:

- pH was outside the WQO range at sample at all sample Sites this sampling round.
- Turbidity was outside of the WQO ranges at sample Sites 002 and 005 this sampling round.
- EC concentrations were inside of the expected range at all sampling sites this sampling round.
- DO concentrations were outside of the expected range at all sample site this sampling round. DO
 was outside the range at comparison sites in background sampling.

7.2 Laboratory Results

Ammonia, Chlorophyll-a, Filterable Reactive Phosphorous (FRP), Oxides of Nitrogen (NOx), Total Nitrogen, Total Phosphorus, Aluminium, Cobalt, and Zinc were above the WQOs for some sample sites shown in **Table 3**.

The chain of custody form is included in **Appendix D**. A summary of all lab results with comparison to WQOs is included in **Appendix E**. A full copy of the laboratory results is included in **Appendix F**.

Table 3. Parameters in exceedance of the trigger criteria for sampling conducted. Results above guidelines are highlighted.

are riigriiigrica.											
		Water (Objec (WQ	tives								
Analyte	Unit	Estuary	Fresh Water	WC 001 (Down)	NWC 002 (Up)	EC 003 (Up)	DD 005 (Down)	013 Trip	014 Field	015 Duplicate	
Ammonia	mg/L	0.015	0.02	0.28	0.5	0.15	0.005	<0.005	<0.005	0.51	
Chlorophyll-a	mg/L	4	5	8	10	<1	20	<1	<1	20	
Filterable Reactive Phosphorus	mg/L	0.005	0.02	0.006	0.02	0.14	0.01	<0.005	<0.005	0.02	
Oxides of Nitrogen	mg/L	0.015	0.040	<0.005	0.05	<0.005	3.9	<0.005	<0.005	0.05	
Total Nitrogen	mg/L	0.30	0.35	1	1.5	0.9	4.7	<0.1	<0.1	1.4	
Total Phosphorus	mg/L	0.030	0.025	0.04	0.06	0.20	0.02	<0.01	<0.01	0.06	
Aluminium	μg/L	N/A	55	60	150	160	50	<10	<10	160	
Cobalt	μg/L	1.0	N/A	3	3	<1	<1	<1	<1	3	
Zinc	μg/L	15	8.0	4	11	11	7	<1	<1	15	

When compared to the WQOs for Freshwater and Estuaries:

- Ammonia was above the WQOs at Sites 001, 002, and 003 this sampling round. Ammonia was above the WQOs at comparison sites in background sampling. Ammonia has increased at Sites 002, and 003 and decreased at Sites 001, and 005 when compared to the previous month.
- Chlorophyll-a was above WQOs at Sites 001, 002, and 005 this sampling round. Chlorophyll-a was above the WQO at comparison sites in background sampling. Chlorophyll-a has increased at Sites 001 and 005, remained the same at Site 003, and decreased at Site 002, when compared to the previous month.

- Filterable Reactive Phosphorus was above WQOs at Sites 001, 002, and 003 this sampling round. Filterable Reactive Phosphorus has increased at Sites 001, 002, and 005 and remained the same at Site 003 when compared to the previous month.
- NOx was above the WQOs criteria at Sites 002, and 005. NOx has increased at Sites 002, and 005
 and decreased at Sites 001, and 003 when compared to the previous month.
- TN was above the WQOs criteria at all sites this sampling round. TN was above the WQOs at comparison sites in background sampling. TN has increased at all sites when compared to the previous month.
- TP was above the WQOs criteria at Sites 001, 002, and 003 this sampling round. TP has increased at Sites 001, 002, and 003 and remained the same at Site 005 when compared to the previous month.
- Aluminium was above the WQOs criteria at Site 003 this sampling round. Aluminium has increased
 at all sites when compared to the previous month.
- Cobalt was above the WQOs criteria at Sites 001, and 002 this sampling round. Cobalt has increased at Site 002, and remained the same at Sites 001, 003, and 005 when compared to the previous month.
- Zinc was above the WQOs criteria at Site 003 this sampling round. Zinc has increased at Sites 002, 003, and 005 and decreased at Site 001 when compared to the previous month.
- All pesticides analysed returned non-detectable results.
- All hydrocarbons analysed returned non-detectable results.

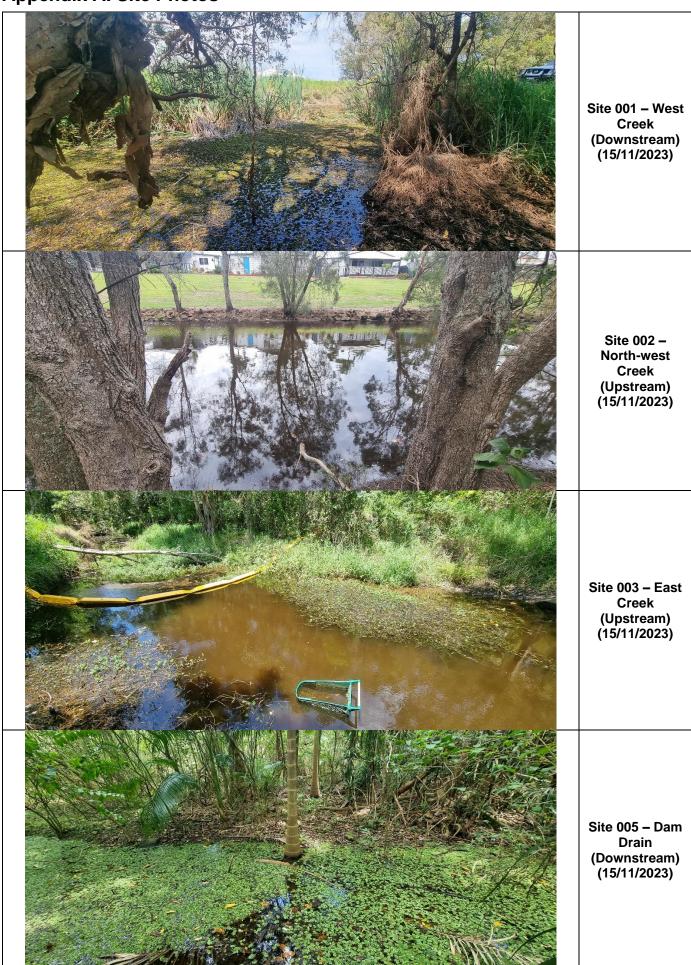
8.0 Quality Assurance and Quality Control

- Parameters analysed in the Trip Blank (013) and Field Blank (014) were below the laboratory detection limits for all analytes.
- The Duplicate Sample (015) was collected at Site 002 and is within acceptable limits for all analytes.
- The laboratory QA/QC is included in the results in **Appendix F**. All laboratory QA/QC was within acceptance criteria.

9.0 Summary of Results and Recommendations

- The month had high rainfall.
- Nutrients (Ammonia, NOx, TN, and TP) and Chlorophyll-a were high and exceeded some water quality parameters for some sites. This includes upstream and downstream sites in past sampling events. Exceedances in nutrients are therefore considered of natural occurrence.
- Metals (Aluminium, Cobalt, and Zinc) exceeded some water quality parameters for some sites. Metals
 have been present in upstream and downstream sampling sites in previous sampling rounds.
 Elevation in metals may be due to pH and redox changes, microbial mineralisation and naturally
 occurring sediment transportation. Changes in metal concentrations are also likely following heavy
 rainfall events.
- Elevated nutrients have been observed at all sampling locations including upstream and downstream sites in previous months and during baseline sampling. Therefore, based on the assessment of the October/November water quality data, the Tweed Valley Hospital Project construction activities are unlikely to be adversely impacting the downstream water quality. As such, the current soil and erosion controls implemented on site are considered to be effective.

Kind regards,



mob:

office: (02) 66-215-123 fax: (02) 66-218-123 ABN: 82 106 758 123

Appendix A. Site Photos

Appendix B. Calibration certificate for Aqua troll

Calibration Report

Instrument Aqua TROLL 400 Serial Number 1008667 Created 14/11/2023

Serial Number 997760 Last Calibrated 14/11/2023

Calibration Details

Slope 1.0761727 Offset -0.02 mg/L

Calibration point 100%

Concentration 7.70 mg/L
Temperature 25.06 °C
Barometric Pressure 1,014.9 mbar

Calibration point 0%

Concentration 0.02 mg/L Temperature 25.50 °C

Serial Number 1008667 Last Calibrated 14/11/2023

Calibration Details

Cell Constant 0.794
Reference Temperature 25.00 °C
TDS Conversion Factor (ppm) 0.65

Serial Number 996085 Last Calibrated 14/11/2023

Calibration Details

Zero Offset -0.08 psi Reference Depth 0.00 ft Reference Offset 0.00 psi

Serial Number 22164 Last Calibrated 14/11/2023

Calibration Details

Total Calibration Points

Calibration Point 1

pH of Buffer 7.00 pH pH mV -39.3 mV Temperature 24.63 °C

Slope and Offset 1

Slope -59.09 mV/pH Offset -39.3 mV

ORP

ORP Solution Zobell's Offset 38.9 mV Temperature 24.69 °C

Appendix C. Full List of Sampling Analytes

3.7 Proposed Surface Water Quality Sampling Parameters

A summary of the proposed sampling analytes is provided below:

Field

- pH
- Turbidity
- Electrical Conductivity (EC)
- Dissolved Oxygen (DO)
- Temperature
- Oxidation Reduction Potential (ORP)
- · Oil and grease

Laboratory

- Total Suspended Solids (TSS)
- Total Dissolved Solids (TDS)
- Major Cations & Hardness
- Ammonia
- Chlorophyll-a
- Filterable Reactive Phosphorus
- Nitrate
- Oxides of Nitrogen
- Total Nitrogen
- Total Phosphorus
- Aluminium (pH > 6.5) filtered
- Arsenic (filtered)
- Boron (filtered)
- Cadmium (filtered)
- Chromium (filtered)
- Copper (filtered)
- Cobalt (filtered)Lead (filtered)
- Manganese (filtered)
- Mercury (filtered)

- Nickel (filtered)
- Selenium (filtered)
- Silver (filtered)
- Zinc (filtered)
- Benzene
- Toluene
- Ethylbenzene
- Xylene Total
- Naphthalene
- Total Recoverable Hydrocarbons (TRH)
- Organochlorine Pesticides (OCP)
 - o 4.4'-DDE
 - o 4.4'-DDT
 - o Aldrin
 - o g-BHC (Lindane)
 - Chlordane
 - Dieldrin
 - Endosulfan
 - o Endrin
 - o Heptachlor
 - Toxaphene
- Organophosphorus Pesticides (OPP)
 - Azinphos-methyl
 - Chlorpyrifos
 - o Demeton-S
 - Diazinon
 - Dimethoate
 - Fenitrothion
 - Malathion

If a sample returns detectable concentrations of the analytes presented in Table 1, additional analyses may be required to enable comparison against additional trigger criteria or trace potential sources of contaminants. It is cost prohibitive to analyse these parameters unless required.

Table 1 Additional Analysis Requirements

Analyte	Additional Analysis
Total Recoverable Hydrocarbons	TRH Silica-gel Clean-up
Arsenic (filtered)	Arsenic (III) (filtered) Arsenic (V) (filtered)
Chromium (filtered)	Chromium (CrVI) (filtered)

Appendix D. Chain of Custody Form

[Copyright and Co	onfidential]		TNI 05 (NICTOR'			-					_						iralah C		
ENVÎROLA	EUŃJKOTHB	СНА	TN OF (CUSTOD	Υ -	CI	ien	t							1	2 Ashle		itswood	I, NSW 2	2067 virolab.com.au
LIVIKOLAI	് <u>സ</u> േരി	ENVIR	ROLAB GRO	OUP - Nationa	i phoi	ne nu	mber 1	1300	424 3	344							- MPL			
Client: Ecoteam			_			_	ct Name	_		_	c (ie re	port ti	tie):						ee, WA 6 Impl.cor	
Contact Person:		in the second			1	•	MC009.	-			•	•	•		١,	/telbour	ne Lab -	Envirol	ab Servic	ces
Project Mg					PO No										. 2	5 Resea	rch Driv	e, Croyo	don Sout	th, VIC 3136
Sample					Enviro	olab Q	uote No.	:			19 S Y22	8_Rev	1		,	h: 03 97	63 2500) / mell	ourne@	Penvirolab.com.au
Address: 13 Ewin	g Street				Date	results	require	d:											ab Servio 1, SA 506	
Lismore NSW 248	30						standard <i>lab in ad</i> v							harges	P	h: 08 70	87 6800) / adel	aide@er	nvirolab.com.au
Phone:	02 (624 5422	Mah.	0428215124		apply Addit	leani	eport for	mati	acdat	Loguic	. ,				2	0a, 10-2	0 Depo	t St, Bar	ab Servio 1yo, QLD	4014
-	02 6621 5123	Mob:	0428215124			omme		mac.	esuat ,	cquis					F	h: 07 32	66 9532	2/ brist	ane@er	nvirolab.com.au
Email:	Testing requirements - 0 <0.025 mg/L, Silver		Low level OCPs		Metal Cation	s: :Al, ns: Na	As, B, Cd /K/Ca/M etals res	lg. Ple	se ho	ld Cr6				itial	ī	Init 7, 1	7 Willes	Rd, Ber	b Service rimah, N in@envi	
	Sample i	information									Test	s Requ	ired							Comments
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	Type of sample	TRH/BTEXN	Dissolved Metals	OC/OP + toxaphene + demeton	TSS	TDS	Cations + Hardness	Ammonia	Cholorphyll-a	Phosphate (FRP)	Nitrate	Nox	Total N	Total P	Cr6+- HOLD	ASIII & V - HOLD	Provide as much information about the sample as you can
1	001 - USW	300 mm	15/11/2023	Water	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			
2	002 - USNW	150 mm	15/11/2023	Water	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	,		
3	003 - DSE	300 mm	15/11/2023	Water	Х	Х	Х	Х	Х	Х	X	Х	Х	X	Х	Х	Х			
4	005 - Dam Drain	150 mm	15/11/2023	<u>Water</u>	Х	Х	Χ	Х	Х	Х	Х	X	Х	Х	Х	Х	Х			
5	013	300 mm	15/11/2023	Water	X	Х	X	Х	Х	Х	Х	Х	Χ	X	X	Х	Х			
6	014	300 mm	15/11/2023	<u>Water</u>	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	X			
7	015_	300 mm	15/11/2023	<u>Water</u>	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X			
				_																
	Please tick the box i	f observ	ed settled se	diment presei	nt in	wate	r sam	ples	is to	be ii	nclu	ded i	n the	extr	actic	n an	d/or	a <u>n</u> al	ysis	
Relinquished by (Company):	Ecoteam		Received by (Com	pany):	EL	S 271)								Lai	b Use	Only		_
Print Name:				Print Na								umbe					Cooli	ng: I	ce / 16	e pack / None
Date & Time:	15/11/2023			Date & Time: 20	141	23,	100	0	_			eratu								tact / Broken (None)
Signature:				Signature: (\ a	レレ						TAT	Req -	SAM	E day	/ 1	/ 2	/ 3	14	STD) <u> </u>

Form 302_V004 Issue date: 21 May 2019 Page 1 of 1

Appendix E. Summary of Lab Results compared to WQOs

		Water (Object (WQ	tives	Sample Codes								
Analyte	Unit	Estuary	Fresh Water	WC 001	NWC 002	EC 003	DD 005		013 Trip	014 Field	015 Duplicate	
Total Suspended Solids (TSS)	mg/L	N/A	N/A	44	12	6	69		<5	<5	13	
Total Dissolved Solids (TDS)	mg/L	N/A	N/A	640	350	260	140		<5	<5	400	
			Major Ca	tions (di	ssolved)	and Hard	ness					
Sodium	mg/L	N/A	N/A	27	45	33	21		<0.5	<0.5	41	
Potassium	mg/L	N/A	N/A	6.0	5	3	1		<0.5	<0.5	5	
Calcium	mg/L	N/A	N/A	57	31	17	4		<0.5	<0.5	34	
Magnesium	mg/L	N/A	N/A	11	12	7.3	4		<0.5	<0.5	13	
Hardness mgCa	aCO ₃ /L	N/A	N/A	190	130	72	28		<3	<3	140	
Nutrients												
Ammonia	mg/L	0.015	0.02	0.28	0.5	0.15	0.005		<0.005	<0.005	0.51	
Chlorophyll-a	mg/m³	4	5	8	10	<1	20		<1	<1	20	
Filterable Reactive Phosphorus	mg/L	0.005	0.02	0.006	0.02	0.14	0.01		<0.005	<0.005	0.02	
Nitrate	mg/L	N/A	N/A	<0.005	0.03	<0.005	3.9		<0.005	<0.005	0.02	
Oxides of Nitrogen	mg/L	0.015	0.040	<0.005	0.05	<0.005	3.9		<0.005	<0.005	0.05	
Total Nitrogen	mg/L	0.30	0.35	1	1.5	0.9	4.7		<0.1	<0.1	1.4	
Total Phosphorus	mg/L	0.030	0.025	0.04	0.06	0.20	0.02		<0.01	<0.01	0.06	
	•		Metals -	All metal	s are Di	ssolved N	letals					
Aluminium	μg/L	N/A	55	60	150	160	50		<10	<10	160	
Arsenic	μg/L	N/A	13	1	<1	<1	<1		<1	<1	<1	
Boron	μg/L	N/A	370	90	80	40	40		<20	<20	80	
Cadmium	μg/L	5.5	0.2	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	<0.1	
Chromium	μg/L	4.4	1.0	<1	<1	<1	<1		<1	<1	<1	
Copper	μg/L	1.3	1.4	<1	<1	<1	<1		<1	<1	<1	
Cobalt	μg/L	1.0	N/A	3	3	<1	<1		<1	<1	3	
Lead	μg/L	4.4	3.4	<1	2	<1	<1		<1	<1	3	
Manganese	μg/L	N/A	1,900	1,400	480	170	38		<1	<1	470	
Mercury	μg/L	0.4	0.6	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05	
Nickel	μg/L	70	11	<1	2	<1	<1		<1	<1	2	
Selenium	μg/L	N/A	11	<1	<1	<1	<1		<1	<1	<1	
Silver	μg/L	1.4	0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05	
	μg/L	15	8.0	4	11	11	7		<1	<1	15	

Water Quality Objectives (WQOs)					Sample Codes										
Analyte	Unit	Estuary	Fresh	WC	NWC	EC	DD		013	014	015				
Allalyte	Oiiit	Estuary	Water	001	002	003	005		Trip	Field	Duplicate				
				Hydr	ocarbo	ns									
Benzene	μg/L	950	700	<1	<1	<1	<1		<1	<1	<1				
Toluene	μg/L	N/A	N/A	<1	<1	<1	<1		<1	<1	<1				
Ethylbenzene	μg/L	N/A	N/A	<1	<1	<1	<1		<1	<1	<1				
Xylene	μg/L	N/A	550	<1	<1	<1	<1		<1	<1	<1				
Naphthalene	μg/L	70	16	<1	<1	<1	<1		<1	<1	<1				
TRH C ₆ - C ₁₀	μg/L	N/A	N/A	<10	<10	<10	<10		<10	<10	<10				
TRH C ₁₀ - C ₁₆	μg/L	N/A	N/A	<50	<50	<50	<50		<50	<50	<50				
TRH C ₁₆ - C ₃₄	μg/L	N/A	N/A	<100	<100	<100	<100		<100	<100	<100				
TRH >C ₃₄ - C ₄₀	μg/L	N/A	N/A	<100	<100	<100	<100		<100	<100	<100				
TRH C ₆ -C ₁₀ less BTEX (F1)	μg/L	N/A	N/A	<10	<10	<10	<10		<10	<10	<10				
TRH >C ₁₀ -C ₁₆ less Naphthalene (F2)	μg/L	N/A	N/A	<50	<50	<50	<50		<50	<50	<50				
(- =/			Organo	chlorin	e Pesti	icides (C	CP)								
4.4'-DDE	μg/L	N/A	N/A	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01				
4.4'-DDT	µg/L	N/A	0.01	<0.006	<0.006	<0.006	<0.006		<0.006	<0.006	<0.006				
Aldrin	μg/L	N/A	N/A	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01				
g-BHC	μg/L	N/A	0.2	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05				
Chlordane	μg/L	N/A	0.08	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01				
Dieldrin	μg/L	N/A	N/A	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01				
Endosulfan	μg/L	0.01	0.2	<0.02	<0.02	<0.02	<0.02		<0.02	<0.02	<0.02				
Endrin	μg/L	0.02	0.008	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01				
Heptachlor	μg/L	N/A	0.09	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01				
Toxaphene	μg/L	N/A	0.2	<2	<2	<2	<2		<2	<2	<2				
•	1 1 3					sticides									
Azinphos-	μg/L	N/A	0.02	<0.02	<0.02	<0.02	<0.02		<0.02	<0.02	<0.02				
methyl															
Chlorpyriphos	μg/L	0.009	0.01	<0.009	<0.009	<0.009	<0.009		<0.009	<0.009	<0.009				
Demeton-S	μg/L	N/A	N/A	<0.02	<0.02	<0.02	<0.02		<0.02	<0.02	<0.02				
Diazinon	μg/L	N/A	0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01				
Dimethoate	μg/L	N/A	0.15	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01				
Fenitrothion	μg/L	N/A	0.2	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01				
Malathion	μg/L	N/A	0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	< 0.05	< 0.05				

Appendix F. Full Laboratory Results