

Tuesday 14 June 2022

To: Site Engineer, Lendlease Tweed Valley Hospital Project **Environmental Engineer & Director**

mob: office: (02) 66-215-123 fax: (02) 66-218-123 ABN: 82 106 758 123

Re: Surface Water Quality Monitoring Results and Report for the Tweed Valley Hospital Project Reporting period: 18 April 2022 to 16 May 2022

1.0 INTRODUCTION

Ecoteam is engaged to undertake monthly and event-based surface water monitoring on behalf of Lendlease Building, as part of the main works for the Tweed Valley Hospital Project. This report presents results from the 35th round of monthly sampling. This report satisfies the requirements of the SSD2 conditions. No controlled or uncontrolled releases from the sediment basins occurred during the reporting period.

2.0 PROJECT AIMS AND SAMPLING OBJECTIVES

The surface water monitoring objectives for the site are to detect changes during construction in receiving water quality resulting from the project. Stormwater discharges potentially contain increased sediment loads, nutrients, total and dissolved metals, hydrocarbons, or other contaminants such as pesticides. Baseline water quality data was performed on 19 and 26 November and 19 December 2018 to record water quality conditions under the existing land use prior to construction (Lendlease Building, 2019).

3.0 WEATHER CONDITIONS

Total rainfall in the period prior to sampling (*18 April 2022 to 16 May 2022*) was 117.1 mm with the highest 24-hour rainfall occurring on 10 May, being 23.4 mm (Kingscliff BOM Station 058137).

4.0 SAMPLING LOCATIONS

Samples were collected from four of the five monthly sampling Sites (001 – 003 and 005). Site 004 has been infilled and has been removed from ongoing sampling rounds. Control samples were also collected and analysed (013 – 015). Sample codes and corresponding sampling locations are shown in **Table 1** and **Figure 1**. Site photos taken on the day of sampling are included in **Appendix A.** During sampling, Site 002 was noted to be flowing North. Therefore, Site 002 will be assessed as a downstream sample site.

Table 1. Monthly sumpling sites, control sumples, sumple codes, and applicable wees.											
Sample Codes	Sampling Site Name	Short Name	WQOs								
001	West Creek (Downstream)	WC	Estuarine								
002	North West Creek (Variable)	NWC	Estuarine								
003	East Creek (Upstream)	EC	Freshwater								
004	Dam (Downstream)	Dam	Freshwater								
005	Dam Drain (Downstream)	DD	Freshwater								
013	Trip Blank	Trip	NA								
014	Field Blank	Field	NA								
015	Field Duplicate	Duplicate	NA								

Table 1. Monthly sampling sites, control samples, sample codes, and applicable WQOs.

natural solutions for environmental challenges

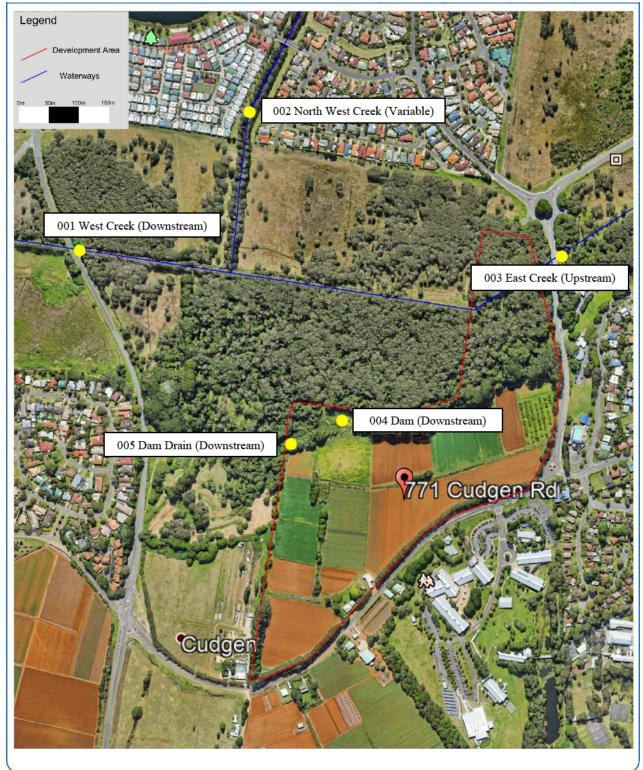


Figure 1. Map of monthly sampling sites (Source: Google Earth).

5.0 SAMPLING METHODOLOGY `

Sampling was undertaken by **Sector 1** and **Sector 1** on Wednesday 17 May 2022. The weather was fine and sunny. In situ, physico-chemical measurements were collected using an AquaTROLL multi-parameter probe, and Turbidity was measured using a Turbimeter Plus turbidity meter. Oil and grease were visually assessed. The calibration certificate for the SmarTROLL is included as **Appendix B**. The Turbimeter Plus is calibrated before each sampling round. Water quality samples were collected at 300 mm below the surface where possible. Samples were collected from the bank using an extension pole.

Samples were filtered and preserved on-site where necessary, stored on ice, and couriered overnight to the NATA accredited Envirolab in Sydney. Trip blank samples (013) were sent from Envirolab and transported to all sites, then returned to Envirolab with the field samples. The field blank samples (014) were assessed at Site 001. Duplicate samples (015) were collected at Site 005 and were filtered and preserved as required. Field and trip blanks were filled with deionized water and do not represent water quality from the site. A full list of analytes for the project is included in **Appendix C**.

6.0 ASSESSMENT CRITERIA

Water quality results were compared against the Water Quality Objectives (WQO) in the following guidelines.

- NSW Water Quality Objectives for the Tweed River Catchment for Aquatic Ecosystems (Tweed 2006) - Trigger criteria for estuaries.
- Australian and New Zealand guidelines for fresh and marine water quality (ANZECC 2000) Trigger values for freshwater (level of protection 95% species).

7.0 RESULTS

7.1 Physico-chemical Results

In situ, physico-chemical sampling results with comparison to WQOs are shown in **Table 2**. There were no surface sheens visible at any sites, therefore oil and grease were not present.

	• •		Quality es (WQOs)	Sample Codes and Results						
Analyte	Units	Estuary	Fresh Water	WC 001 (Down)	NWC 002 (Down)	EC 003 (Up)	DD 005 (Down)			
pН		7.0-8.5	6.5-8.5	6.82	6.63	6.31	5.61			
Turbidity	NTU	0.5-10	6.0-50	26.6	17.4	7.36	1.26			
Electrical Conductivity (EC)	μS/cm	125- 2,200	125- 2,200	804.45	476.62	209.7	167.61			
Dissolved Oxygen (DO)	% Saturation	80-110	85-110	11.82	7.14	10.73	14.68			
Temperature	°C	N/A	N/A	22.67	22.63	22.99	22.2			
Oxidation Reduction Potential (ORP)	mV	N/A	N/A	103.8	30.5	148.2	172.3			

Table 2. Results of physico-chemical parameters. The results above guideling
--

When compared to the WQOs for freshwater and estuaries:

- pH was outside of the WQO ranges at all sampling sites this sampling round.
- Turbidity was outside of the WQO ranges at sampling sites 001, 002, and 005 this sampling round.
- EC was within the WQO ranges at all sampling sites this sampling round.
- DO concentrations were outside of the expected range at all sampling sites this sampling round. DO
 was outside the range at comparison sites in background sampling.

7.2 Laboratory Results

Ammonia, Chlorophyll-a, Filterable Reactive Phosphorous (FRP), Oxides of Nitrogen (NOx), Total Nitrogen, and Total Phosphorus (TP) were above the WQOs for some sample sites. Aluminium was also outside WQOs. Parameters that exceeded the WQOs are shown in **Table 3**.

The chain of custody form is included in **Appendix D**. A summary of all lab results with comparison to WQOs is included as **Appendix E**. A full copy of the laboratory results is included as **Appendix F**.

Table 3. Parameters in exceedance of the trigger criteria for sampling conducted. Results above guidelines
are highlighted.

are ngingin												
		Water (Objec (WQ	tives									
Analyte	Unit	Estuary	Fresh Water	WC 001 (Down)	NWC 002 (Down)	EC 003 (Up)	DD 005 (Down)	013 Trip	014 Field	015 Duplicate		
Ammonia	mg/L	0.015	0.02	0.084	0.18	0.060	0.021	<0.005	<0.005	0.024		
Chlorophyll-a	mg/m ³	4	5	35	4	<2	<2	<2	<2	<2		
Filterable Reactive Phosphorus	mg/L	0.005	0.02	<0.005	0.01	0.03	<0.005	0.02	0.02	<0.005		
Oxides of Nitrogen	mg/L	0.015	0.040	0.06	0.3	<0.005	3.5	0.006	<0.005	3.2		
Total Nitrogen	mg/L	0.30	0.35	0.8	1.2	1	3.7	<0.1	<0.1	3.5		
Total Phosphorus	mg/L	0.030	0.025	0.09	0.07	0.1	<0.02	<0.02	<0.02	<0.02		
Aluminium	µg/L	N/A	55	40	150	310	30	<10	<10	40		

When compared to the WQOs for Freshwater and Estuaries:

- Ammonia was above the WQOs at all sampling sites this sampling round. Ammonia was above the WQOs at comparison sites in background sampling. Ammonia has decreased at Sites 001 and 002 and increased at Sites 003, and 005 compared to the previous month.
- Chlorophyll-a was above the WQOs at Sites 001 and 002. Chlorophyll-a results were varied across comparison sites in background sampling. Chlorophyll-a has increased at Site 001 and remained the same at Sites 002, 003, and 005.
- FRP was above the WQOs at Sites 002 and 003. FRP concentrations increased at Sites 002 and 003 and remained the same at Sites 001 and 005 when compared to last month. FRP results varied across comparison sites in background sampling though were lowest at Sites 001 and 005.

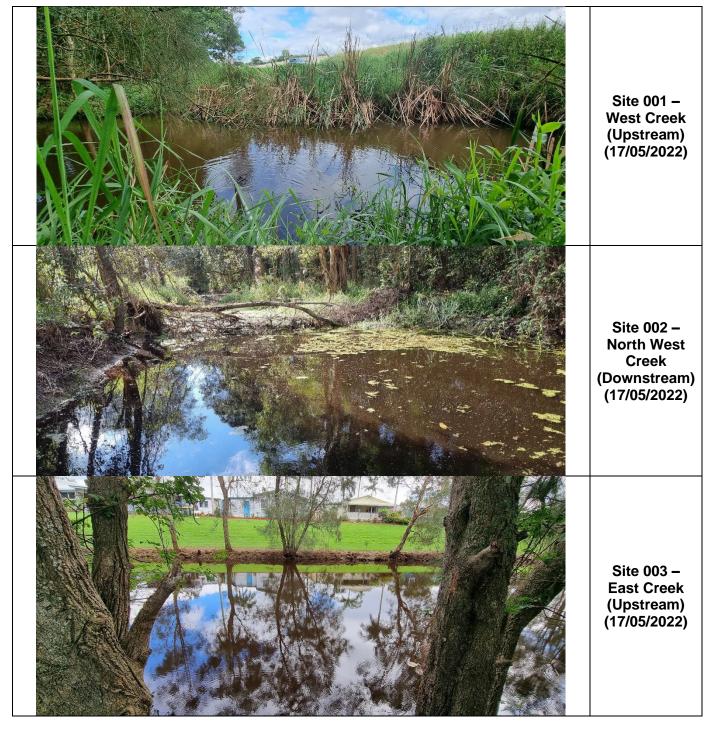
Recorded to the second second

- NOx was above the WQOs criteria at Sites 001, 002, and 005. NOx has decreased at Sites 001 and 002, and remained the same at Sites 003 and 005 when compared to the previous month.
- TN was above the WQOs criteria at all sites. TN has decreased at Sites 002 and 005 and increased at Sites 001 and 003 when compared to last month. TN was above the WQOs at comparison sites in baseline sampling.
- TP was above the WQOs at Sites 001, 002, and 003. TP has increased at Sites 001, 002, and 003 and remained the same at Site 005 when compared to the previous month. TP was above the WQOs at comparison sites in baseline sampling.
- Aluminium was above the WQO at Site 003. This is similar to the previous month. Aluminium has increased at all sampling sites this sampling round when compared to last month. Aluminium has been observed at both upstream and downstream sampling sites during past sampling rounds.
- All other metals were within estuarine and freshwater criteria this month.
- Demeton was analysed and returned non-detectable results.
- TRH (C₁₀-C₄₀) was not detected at any sample site.

8.0 Quality Assurance and Quality Control

- Parameters analysed in the Trip Blank (013) and Field Blank (014) were below the laboratory detection limits for all analytes. Nutrients were found in low levels within the Trip and Field Blank; however these represent the deionized water and do not reflect the site condition.
- The Duplicate Sample (015) was collected at Site 002 and is within acceptable limits for all analytes. The laboratory QA/QC is included in the results in **Appendix F**. All laboratory QA/QC was within acceptance criteria.. Based on the above, the results are considered acceptable for the purposes of the project.

9.0 Summary of Results and Recommendations


- The month had low to medium rainfall.
- Nutrients (Ammonia, NOx, TN, TP, and FRP) were high and exceeded some water quality parameters for some sites. This includes upstream and downstream sites in past sampling events. Exceedances in nutrients are therefore considered of natural occurrence.
- Aluminium exceeded WQOs at Site 003 during the month. Metals have been present in upstream and downstream sampling sites in previous sampling rounds. Elevation in metals may be due to pH and redox changes, microbial mineralisation, and naturally occurring sediment transportation. Changes in metal concentrations are also likely following heavy rainfall events.
- Elevated nutrients and metals have been observed at all sampling locations including upstream and downstream sites in previous months and during baseline sampling. Therefore, based on the assessment of the April/May water quality data, the Tweed Valley Hospital Project construction activities are unlikely to be adversely impacting the downstream water quality. As such, the current soil and erosion controls implemented on site are considered to be effective.

Kind regards,

Environmental Engineer & Director

Appendix A. Site Photos

Site 005 – Dam Drain (Downstream) (17/05/2022)

Appendix B. Calibration certificate for AquaTROLL

		Fisher		LECTRO	÷•••••						
Т. У	ABN 52 05 5 Caribbe Scoresby Phone: 1 3	- tific Australia Pty Ltd 8 390 917 ean Drive VIC 3179 00 735 295 763 1169	Customer: Address:	Ecotechnolo 13 Ewing st Lismore NS		TY Ltd					
			Attention:								
N	ake: odel: erial No:	In-Situ AquaTroll 400 741219 / 746352	Lab.ID/Asse Customer O/ Location:		63		libration: 05-	05-2021 2022 2105240050			
s	ervice and Safe	ety Checks		Pass/Fail	Check and	d Adjust		20 . 25	Pass/Fail		
С	onsult operator	regarding performan	ce/problems	Pass	Probes, le	ads and con	nectors		Pass		
С	neck general op	eration, note addition	nal problems	Pass	Keypad / u	ser controls			Pass		
Ε	ectrical safety if	applicable to AS/NZ	\$ 3760:2003	N/A	Power sup	ply / battery	voltage and cond	ition	Pass		
In	tialization Proc	edure		Pass	Probe(s) p	erformance	(response slow or	acceptable)	Acceptable		
In	strument Condi	tion		Pass		d external c			Pass		
		111 111 111 111 111 111 111 111 111 11		Calibration/ Acc	L				1		
;	Standard Type	d Type Serial Number Standard Value (if applicable) ± Variation		Displayed Value	Standard Value ± Variation	Displayed Value	Standard Value ± Variation	Displayed Value	Pass/ Fail		
v	рH	20945	7.00 ± 0.02	7.00	4.00 ± 0.02	4.00			Pass		
v	mV (pH)		0.0 +/+ 30	-7.7	175.5 +/- 30	163.1			Pass		
•	Slope (pH)		-59.1 +/- 3	-56.93					Pass		
v	DO	745063 🧋	8.3mg/L @21.5oC	8.27mg/L @21.66oC	0.0	0.03			Pass		
	ISE										
v	ORP	20945	234.5mV @22.0oC	234.5 @22.1oC					Pass		
~	Conductivity	746352	1413us/cm	1413us/cm					Pass		
	TDS										
¥	Temp C	746352	22.5	22.47					Pass		
		· · · · · · · · · · · · · · · · · · ·	an - and the second	Reference Instrum	nents Used]		
	Ma	ke	Model / Part I		THE OTHER DESIGNATION.	ch Number	Ex	piry / Reference	e #		
_	Thermo S		ECBU4BTC			0/01		Nov 2023			
	Thermo S	Scientific	ECBU7BTC	CILIT	450	0/02		Nov 2023			
	FLU		179 True RMS r	nultimeter		0338		Feb 2022			
	Thermo S		ECCON14	13BT	270	0/01		Jun 2023			
	AC		Zobell A & B (06		362211 (A) 8)	Oct 2021 (A & E	3)		
	TP	S	Sodium Sulphite f	for Zero DO	106	640		Aug 2021			

General Comments and Recommendations on Instrument Condition, Location Details and Parts Used in Service

Instrument inspected and noted operation. Refilled pH reference filling solution and replaced reference junction. Cleaned sensors and instrument. Calibrated individual sensor parameters. DO Sensor slope of 1.070123. ORP sensor offset of 5.5mV. Conductivity cell constant:0.979

Issued Maintenance Kit and Reference junction kit.

Engineer's Name

Date 27th May 2021

Issue 1

Oct 06 This document must not be reproduced except in full 000

G0232 Page 1 of 1

Appendix C. Full List of Sampling Analytes

3.7 Proposed Surface Water Quality Sampling Parameters

A summary of the proposed sampling analytes is provided below:

Field

- pH
- Turbidity
- Electrical Conductivity (EC)
- Dissolved Oxygen (DO)
- Temperature
- Oxidation Reduction Potential (ORP)
- Oil and grease

Laboratory

- Total Suspended Solids (TSS)
- Total Dissolved Solids (TDS)
- Major Cations & Hardness
- Ammonia
- Chlorophyll-a
- Filterable Reactive Phosphorus
- Nitrate
- Oxides of Nitrogen
- Total Nitrogen
- Total Phosphorus
- Aluminium (pH > 6.5) filtered
- Arsenic (filtered)
- Boron (filtered)
- Cadmium (filtered)
- Chromium (filtered)
- Copper (filtered)
- Cobalt (filtered)
- Lead (filtered)
- Manganese (filtered)
- Mercury (filtered)

- Nickel (filtered)
- Selenium (filtered)
- Silver (filtered)
- Zinc (filtered)
- Benzene
- Toluene
- Ethylbenzene
- Xylene Total
- Naphthalene
- Total Recoverable Hydrocarbons (TRH)
- Organochlorine Pesticides (OCP)
 - 4.4'-DDE
 - o 4.4'-DDT
 - o Aldrin
 - g-BHC (Lindane)
 - Chlordane
 - o Dieldrin
 - Endosulfan
 - o Endrin
 - Heptachlor
 - Toxaphene
- Organophosphorus Pesticides (OPP)
 - Azinphos-methyl
 - Chlorpyrifos
 - Demeton-S
 - o Diazinon
 - Dimethoate
 - Fenitrothion
 - Malathion

If a sample returns detectable concentrations of the analytes presented in Table 1, additional analyses may be required to enable comparison against additional trigger criteria or trace potential sources of contaminants. It is cost prohibitive to analyse these parameters unless required.

Table 1 Additional Analysis Requirements

Analyte	Additional Analysis
Total Recoverable Hydrocarbons	TRH Silica-gel Clean-up
Arsenic (filtered)	Arsenic (III) (filtered) Arsenic (V) (filtered)
Chromium (filtered)	Chromium (CrVI) (filtered)

PAGE 10 OF 11

Appendix D. Chain of Custody Form

[Copyright and C	ศาพิ์สูงเลย	СНА	IN OF	CUSTO	DY	- (Clie	nt							1 1		y St, Cha	tswood	, NSW 20	067 Grolab.com.au
ENVIROLA	B @mpl	ENVIR		ROUP - Natio	nal pł	ione	numbe	r 130	0 424	4 344						erth Lal				
Client: Ecoteam	oteam						Client Project Name / Number / Site etc (ie report title):						16-18 Hayden Crt, Myaree, WA 6154 Ph: 08 9317 2505 / lab@mpl.com.au							
Contact Person:					1	s	MC009.3	35 - Tw	reed V	alley H	ospita	Proje	ct		Ι,	felbour	ne Lab -	Envirol	ab Servic	es.
Project Mgr:					PO No										1 2	5 Resea	rch Driv	e, Croyo	on Sout	h, VIC 3136
Sampler:					Enviro	lab Qu	ote No.	:			195Y22	8_Rev :	1		1'	n: 03 9/	63 2500	/ meit	ourne@	envirolab.com.au
Address: 13 Ewin	ng Street				Date r	esults	required	1:											ab Servic 1, SA 505	
Lismore NSW 24	80						tandard								,					wirolab.com.au
					Note: 1 apply	Inform	lab in adv	ance if	urgent	turnard	ound is	require	d - surc	harges		risbane	Office -	Envirol	ab Servic	es
Phone:	02 6621 5123	Mob:				onal re	port for	mat: e	sdat /	equis	1				1 2	Oa, 10-2	10 Depo	t St, Ban	yo, QLD	4014 wirolab.com.au
Email:					Lab Co	omme	its:								1					
							As, B, Cd												o Service rimah, N	
1	Testing requirements - Cl						K/Ca/M tals res				ind As	III/Υ ι	intil in	itial	۲ I	h: 08 85	67 120	l/darw	in@envi	rolab.com.au
	<0.025 mg/L, Silver <		Low level OCF	's and OPPs	dissor	veu m	tais resi		e back	•		in state	in and in the					_		
	Sample in	formation		-* ** 1		69		· · · ·			, Tests	Requ		1	n k e s			2.2.2.2	0	Comments
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	<u>Type of sample</u>	TRH/BTEXN	Dissolved Metals	0C/0P + toxaphene + demeton	TSS	tos	Cations + Hardness	Ammonia	Cholorphyll-a	Phosphate (FRP)	Nitrate	Nox	Total N	Total P	Cr6+- HOLD	AstIT & V - HOLD	Provide as much information about the sample as you can
<u> </u>	001 - USW	300 mm		Water	х	X	х	x	x	x	x	x	X	x	x	x	x	<u> </u>		·
2	002 - USNW	150 mm		Water	X	Х	X	X	X	X	X	X	X	X	X	X	X			
3	003 - DSE	300 mm		Water	X	X	X	X	X	X	X	X	X	X	X	X	X			
4	005 - Dam Drain	150 mm		Water	X	X	X	X	X	X	х	X	X	X	X	X	X			
4	013	300 mm		Water	X	х	Х	х	X	X	х	X	Х	x	X	x	X			
6	014	300 mm		Water	X	х	х	X	X	X	X	х	X	X	X	X	X			
·7	015	300 mm		Water	X	х	х	X	X	X	X	х	X	X	x	X	X			
										-				-						
										-				-				· · ·		
							-							-						
																		<u> </u>		
							-			-				<u> </u>						
	Please tick the box if observed settled sediment present in water samples is to be included in the extraction and/or analysis																			
Relinquished by		Ecoteam		Received by (Com							1					_	b Use			
Print Name:				Print Name:							Job n	umbe	r: 24	574	and a set of the set o					
Date & Time:	21/04/2022			Date & Time: 18	5.20	22		020	1			eratu					Security seal: Intart / Broken / None			
	Signature: TAT Req - SAME day / 1 / 2 / 3 / 4 / STD																			

Appendix E. Summary of Lab Results compared to WQOs

		Water (Objec (WQ	tives	Sample Codes									
Analyte	Unit	Estuary	Fresh Water	WC 001	NWC 002	EC 003	DD 005		013 Trip	014 Field	015 Duplicate		
Total Suspended Solids (TSS)	mg/L	N/A	N/A	14	10	12	<5		<5	<5	<5		
Total Dissolved Solids (TDS)	mg/L	N/A	N/A	560	340	200	150		<5	18	120		
	Major Cations (dissolved) and Hardness												
Sodium	mg/L	N/A	N/A	89	48	25	21		<0.5	<0.5	21		
Potassium	mg/L	N/A	N/A	5.2	3	2	1		<0.5	<0.5	1		
Calcium	mg/L	N/A	N/A	44	26	11	3		<0.5	<0.5	3		
Magnesium	mg/L	N/A	N/A	17	10	4	4		<0.5	<0.5	4		
Hardness mgCa	CO₃/L	N/A	N/A	180	110	44	26		<3	<3	26		
Nutrients													
Ammonia	mg/L	0.015	0.02	0.084	0.18	0.060	0.021		<0.005	<0.005	0.024		
Chlorophyll-a	mg/m ³	4	5	35	4	<2	<2		<2	<2	<2		
Filterable Reactive Phosphorus	mg/L	0.005	0.02	<0.005	0.01	0.03	<0.005		0.02	0.02	<0.005		
Nitrate	mg/L	N/A	N/A	0.056	0.25	<0.005	3.5		0.006	<0.005	3.2		
Oxides of Nitrogen	mg/L	0.015	0.040	0.06	0.3	<0.005	3.5		0.006	<0.005	3.2		
Total Nitrogen	mg/L	0.30	0.35	0.8	1.2	1	3.7		<0.1	<0.1	3.5		
Total Phosphorus	mg/L	0.030	0.025	0.09	0.07	0.1	<0.02		<0.02	<0.02	<0.02		
		Me	tals – A	ll metal	s are Di	ssolved	Metals			•	1		
Aluminium	µg/L	N/A	55	40	150	310	30		<10	<10	40		
Arsenic	µg/L	N/A	13	<1	1	2	<1		<1	<1	<1		
Boron	µg/L	N/A	370	100	70	20	40		<20	<20	40		
Cadmium	µg/L	5.5	0.2	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	<0.1		
Chromium	µg/L	4.4	1.0	<1	<1	<1	<1		<1	<1	<1		
Copper	µg/L	1.3	1.4	<1	<1	<1	<1		<1	<1	<1		
Cobalt	µg/L	1.0	N/A	<1	2	1	<1		<1	<1	<1		
Lead	µg/L	4.4	3.4	<1	<1	3	<1		<1	<1	<1		
Manganese	µg/L	N/A	1,900	410	330	69	36		<1	<1	36		
Mercury	µg/L	0.4	0.6	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05		
Nickel	µg/L	70	11	<1	1	1	<1		<1	<1	<1		
Selenium	µg/L	N/A	11	<1	<1	<1	<1		<1	<1	<1		
Zinc	µg/L	15	8.0	<0.05	<0.05	<0.05	<0.05		<1	<1	<0.05		
Silver	µg/L	1.4	0.05	4	5	9	4		<0.05	<0.05	4		

natural solutions for environmental challenges

		Water (Objec (WQ	tives	Sample Codes							
Analyte	Unit	Estuary	Fresh Water	WC 001	NWC 002	EC 003	DD 005		013 Trip	014 Field	015 Duplicate
				Hydr	ocarboi	าร		<u> </u>			
Toluene	mg/L	0.70	0.95	<1	<1	<1	<1		<1	<1	<1
Ethylbenzene	mg/L	N/A	N/A	<1	<1	<1	<1		<1	<1	<1
Xylene	mg/L	N/A	N/A	<1	<1	<1	<1		<1	<1	<1
Naphthalene	mg/L	N/A	0.55	<1	<1	<1	<1		<1	<1	<1
TRH C6 - C10	mg/L	0.07	0.016	<10	<10	<10	<10		<10	<10	<10
TRH C10 - C16	mg/L	N/A	N/A	<50	<50	<50	<50		<50	64	<50
TRH C16 - C34	mg/L	N/A	N/A	<100	<100	<100	<100		<100	<100	<100
TRH >C ₃₄ - C ₄₀	mg/L	N/A	N/A	<100	<100	<100	<100		<100	<100	<100
TRH C ₆ -C ₁₀ less BTEX (F1)	mg/L	N/A	N/A	<10	<10	<10	<10		<10	<10	<10
TRH >C10-C16 less Naphthalene (F2)	mg/L	N/A	N/A	<50	<50	<50	<50		<50	<50	<50
Organochlorine Pesticides (OCP)											
4.4'-DDE	µg/L	N/A	N/A	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01
4.4'-DDT	µg/L	N/A	0.01	<0.006	<0.006	<0.006	<0.006		<0.006	<0.006	<0.006
Aldrin	µg/L	N/A	N/A	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01
g-BHC	µg/L	N/A	0.2	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01
Chlordane	µg/L	N/A	0.08	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01
Dieldrin	µg/L	N/A	N/A	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01
Endosulfan	µg/L	0.01	0.2	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01
Endrin	µg/L	0.02	0.008	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01
Heptachlor	µg/L	N/A	0.09	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01
Toxaphene	µg/L	N/A	0.2	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2	<0.2
		0	rganop	hospho	rus Pes	ticides	(OPP)				
Azinphos- methyl	µg/L	N/A	0.02	<0.02	<0.02	<0.02	<0.02		<0.02	<0.02	<0.02
Chlorpyriphos	µg/L	0.009	0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01
Demeton-S	µg/L	N/A	N/A	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2	<0.2
Diazinon	µg/L	N/A	0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01
Dimethoate	µg/L	N/A	0.15	<0.15	<0.15	<0.15	<0.15		<0.15	<0.15	<0.15
Fenitrothion	µg/L	N/A	0.2	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2	<0.2
Malathion	µg/L	N/A	0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05

Appendix F. Full Laboratory Results

CERTIFICATE OF ANALYSIS 295747

Client Details	
Client	Ecoteam
Attention	
Address	13 Ewing Street, Lismore, NSW, 2480

Sample Details	
Your Reference	SMC009.35 - Tweed Valley Hospital Project
Number of Samples	7 Water
Date samples received	18/05/2022
Date completed instructions received	18/05/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details				
Date results requested by	25/05/2022			
Date of Issue	25/05/2022			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

Results Approved By

Senior Chemist Group Technical Manager Metals Supervisor , Senior Chemist

vTRH(C6-C10)/BTEXN in Water						
Our Reference		295747-1	295747-2	295747-3	295747-4	295747-5
Your Reference	UNITS	001-USW	002 - USNW	003 - DSE	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	18/05/2022	18/05/2022	18/05/2022	18/05/2022	18/05/2022
Date analysed	-	19/05/2022	19/05/2022	19/05/2022	19/05/2022	19/05/2022
TRH C ₈ - C ₉	µg/L	<10	<10	<10	<10	<10
TRH C ₈ - C ₁₀	µg/L	<10	<10	<10	<10	<10
TRH C ₈ - C ₁₀ less BTEX (F1)	µg/L	<10	<10	<10	<10	<10
Benzene	µg/L	<1	<1	<1	<1	<1
Toluene	µg/L	<1	<1	<1	<1	<1
Ethylbenzene	µg/L	<1	<1	<1	<1	<1
m+p-xylene	µg/L	<2	<2	<2	<2	<2
o-xylene	µg/L	<1	<1	<1	<1	<1
Naphthalene	µg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	103	103	102	96	104
Surrogate toluene-d8	%	101	100	102	100	101
Surrogate 4-BFB	%	100	99	101	109	100

vTRH(C6-C10)/BTEXN in Water			
Our Reference		295747-6	295747-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date extracted	-	18/05/2022	18/05/2022
Date analysed	-	19/05/2022	19/05/2022
TRH C ₆ - C ₉	µg/L	<10	<10
TRH C ₈ - C ₁₀	µg/L	<10	<10
TRH C ₈ - C ₁₀ less BTEX (F1)	µg/L	<10	<10
Benzene	µg/L	<1	<1
Toluene	µg/L	<1	<1
Ethylbenzene	µg/L	<1	<1
m+p-xylene	µg/L	<2	<2
o-xylene	µg/L	<1	<1
Naphthalene	µg/L	<1	<1
Surrogate Dibromofluoromethane	%	103	102
Surrogate toluene-d8	%	100	99
Surrogate 4-BFB	%	99	98

svTRH (C10-C40) in Water						
Our Reference		295747-1	295747-2	295747-3	295747-4	295747-5
Your Reference	UNITS	001-USW	002 - USNW	003 - DSE	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	19/05/2022	19/05/2022	19/05/2022	19/05/2022	19/05/2022
Date analysed	-	19/05/2022	19/05/2022	19/05/2022	19/05/2022	19/05/2022
TRH C ₁₀ - C ₁₄	µg/L	<50	<50	<50	<50	<50
TRH C15 - C28	µg/L	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	µg/L	<100	<100	<100	<100	<100
TRH >C10 - C16	µg/L	<50	<50	<50	<50	<50
TRH >C10 - C18 less Naphthalene (F2)	µg/L	<50	<50	<50	<50	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100	<100	<100	<100	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	89	84	89	97	92

svTRH (C10-C40) in Water			
Our Reference		295747-6	295747-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date extracted	-	19/05/2022	19/05/2022
Date analysed	-	19/05/2022	19/05/2022
TRH C ₁₀ - C ₁₄	µg/L	<50	<50
TRH C ₁₅ - C ₂₈	µg/L	<100	<100
TRH C ₂₉ - C ₃₆	µg/L	<100	<100
TRH >C ₁₀ - C ₁₆	µg/L	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	µg/L	<50	<50
TRH >C16 - C34	µg/L	<100	<100
TRH >C34 - C40	µg/L	<100	<100
Surrogate o-Terphenyl	%	85	89

OCPs in Water - Low Level						
Our Reference		295747-1	295747-2	295747-3	295747-4	295747-5
Your Reference	UNITS	001-USW	002 - USNW	003 - DSE	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	19/05/2022	19/05/2022	19/05/2022	19/05/2022	19/05/2022
Date analysed	-	20/05/2022	20/05/2022	20/05/2022	20/05/2022	20/05/2022
alpha-BHC	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
НСВ	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
beta-BHC	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
gamma-BHC	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Heptachlor	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
delta-BHC	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Aldrin	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Heptachlor Epoxide	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
gamma-Chlordane	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
alpha-Chlordane	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Endosulfan I	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
pp-DDE	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Dieldrin	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Endrin	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Endosulfan II	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
pp-DDD	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Endrin Aldehyde	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
pp-DDT	µg/L	<0.006	<0.006	<0.006	<0.006	<0.006
Endosulfan Sulphate	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Methoxychlor	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Surrogate TCMX	%	115	139	107	132	118

OCPs in Water - Low Level			
Our Reference		295747-6	295747-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date extracted	-	19/05/2022	19/05/2022
Date analysed	-	20/05/2022	20/05/2022
alpha-BHC	µg/L	<0.01	<0.01
НСВ	µg/L	<0.01	<0.01
beta-BHC	µg/L	<0.01	<0.01
gamma-BHC	µg/L	<0.01	<0.01
Heptachlor	µg/L	<0.01	<0.01
delta-BHC	µg/L	<0.01	<0.01
Aldrin	µg/L	<0.01	<0.01
Heptachlor Epoxide	µg/L	<0.01	<0.01
gamma-Chlordane	µg/L	<0.01	<0.01
alpha-Chlordane	µg/L	<0.01	<0.01
Endosulfan I	µg/L	<0.01	<0.01
pp-DDE	µg/L	<0.01	<0.01
Dieldrin	µg/L	<0.01	<0.01
Endrin	µg/L	<0.01	<0.01
Endosulfan II	µg/L	<0.01	<0.01
pp-DDD	µg/L	<0.01	<0.01
Endrin Aldehyde	µg/L	<0.01	<0.01
pp-DDT	µg/L	<0.006	<0.006
Endosulfan Sulphate	μg/L	<0.01	<0.01
Methoxychlor	μg/L	<0.01	<0.01
Surrogate TCMX	%	130	112

OP in water LL ANZECCF/ADWG						
Our Reference		295747-1	295747-2	295747-3	295747-4	295747-5
Your Reference	UNITS	001-USW	002 - USNW	003 - DSE	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	19/05/2022	19/05/2022	19/05/2022	19/05/2022	19/05/2022
Date analysed	-	20/05/2022	20/05/2022	20/05/2022	20/05/2022	20/05/2022
Dichlorovos	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Dimethoate	µg/L	<0.15	<0.15	<0.15	<0.15	<0.15
Diazinon	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Chlorpyriphos-methyl	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Methyl Parathion	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Ronnel	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Fenitrothion	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyriphos	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Parathion	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Bromophos ethyl	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Ethion	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Surrogate TCMX	%	115	139	107	132	118

OP in water LL ANZECCF/ADWG			
Our Reference		295747-6	295747-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date extracted	-	19/05/2022	19/05/2022
Date analysed	-	20/05/2022	20/05/2022
Dichlorovos	µg/L	<0.2	<0.2
Dimethoate	µg/L	<0.15	<0.15
Diazinon	µg/L	<0.01	<0.01
Chlorpyriphos-methyl	µg/L	<0.2	<0.2
Methyl Parathion	µg/L	<0.2	<0.2
Ronnel	µg/L	<0.2	<0.2
Fenitrothion	µg/L	<0.2	<0.2
Malathion	µg/L	<0.05	<0.05
Chlorpyriphos	µg/L	<0.01	<0.01
Parathion	µg/L	<0.01	<0.01
Bromophos ethyl	µg/L	<0.2	<0.2
Ethion	µg/L	<0.2	<0.2
Azinphos-methyl (Guthion)	µg/L	<0.02	<0.02
Surrogate TCMX	%	130	112

Miscellaneous Organics - water						
Our Reference		295747-1	295747-2	295747-3	295747-4	295747-5
Your Reference	UNITS	001-USW	002 - USNW	003 - DSE	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	19/05/2022	19/05/2022	19/05/2022	19/05/2022	19/05/2022
Date analysed	-	19/05/2022	19/05/2022	19/05/2022	19/05/2022	19/05/2022
Toxaphene*	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Demeton-O	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Demeton-S	µg/L	<5	<5	<5	<5	<5
Surrogate p-Terphenyl-d14	%	61	60	64	67	63

Miscellaneous Organics - water			
Our Reference		295747-6	295747-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date prepared	-	19/05/2022	19/05/2022
Date analysed	-	19/05/2022	19/05/2022
Toxaphene*	µg/L	<0.2	<0.2
Demeton-O	µg/L	<0.2	<0.2
Demeton-S	µg/L	<5	<5
Surrogate p-Terphenyl-d14	%	97	60

HM in water - dissolved						
Our Reference		295747-1	295747-2	295747-3	295747-4	295747-5
Your Reference	UNITS	001-USW	002 - USNW	003 - DSE	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	19/05/2022	19/05/2022	19/05/2022	19/05/2022	19/05/2022
Date analysed	-	19/05/2022	19/05/2022	19/05/2022	19/05/2022	19/05/2022
Aluminium-Dissolved	µg/L	40	150	310	30	<10
Arsenic-Dissolved	µg/L	<1	1	2	<1	<1
Boron-Dissolved	µg/L	100	70	20	40	<20
Cadmium-Dissolved	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	µg/L	<1	<1	<1	<1	<1
Copper-Dissolved	µg/L	<1	<1	<1	<1	<1
Cobalt-Dissolved	µg/L	<1	2	1	<1	<1
Lead-Dissolved	µg/L	<1	<1	3	<1	<1
Manganese-Dissolved	µg/L	410	330	69	36	<1
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	µg/L	<1	1	1	<1	<1
Selenium-Dissolved	µg/L	<1	<1	<1	<1	<1
Silver-Dissolved	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Zinc-Dissolved	µg/L	4	5	9	4	<1

HM in water - dissolved			
Our Reference		295747-6	295747-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date prepared	-	19/05/2022	19/05/2022
Date analysed	-	19/05/2022	19/05/2022
Aluminium-Dissolved	µg/L	<10	40
Arsenic-Dissolved	µg/L	<1	<1
Boron-Dissolved	µg/L	<20	40
Cadmium-Dissolved	µg/L	<0.1	<0.1
Chromium-Dissolved	µg/L	<1	<1
Copper-Dissolved	µg/L	<1	<1
Cobalt-Dissolved	µg/L	<1	<1
Lead-Dissolved	µg/L	<1	<1
Manganese-Dissolved	µg/L	<1	36
Mercury-Dissolved	µg/L	<0.05	<0.05
Nickel-Dissolved	µg/L	<1	<1
Selenium-Dissolved	µg/L	<1	<1
Silver-Dissolved	µg/L	<0.05	<0.05
Zinc-Dissolved	µg/L	<1	4

Metals in Waters - Acid extractable						
Our Reference		295747-1	295747-2	295747-3	295747-4	295747-5
Your Reference	UNITS	001-USW	002 - USNW	003 - DSE	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	19/05/2022	19/05/2022	19/05/2022	19/05/2022	19/05/2022
Date analysed	-	20/05/2022	20/05/2022	20/05/2022	20/05/2022	20/05/2022
Phosphorus - Total	mg/L	0.09	0.07	0.1	<0.02	<0.02

Metals in Waters - Acid extractable			
Our Reference		295747-6	295747-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date prepared	-	19/05/2022	19/05/2022
Date analysed	-	20/05/2022	20/05/2022
Phosphorus - Total	mg/L	<0.02	<0.02

Cations in water Dissolved						
Our Reference		295747-1	295747-2	295747-3	295747-4	295747-5
Your Reference	UNITS	001-USW	002 - USNW	003 - DSE	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date digested	-	19/05/2022	19/05/2022	19/05/2022	19/05/2022	19/05/2022
Date analysed	-	19/05/2022	19/05/2022	19/05/2022	19/05/2022	19/05/2022
Sodium - Dissolved	mg/L	89	48	25	21	<0.5
Potassium - Dissolved	mg/L	5.2	3	2	1	<0.5
Calcium - Dissolved	mg/L	44	26	11	3	<0.5
Magnesium - Dissolved	mg/L	17	10	4	4	<0.5
Hardness	mgCaCO 3 /L	180	110	44	26	<3

Cations in water Dissolved			
Our Reference		295747-6	295747-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date digested	-	19/05/2022	19/05/2022
Date analysed	-	19/05/2022	19/05/2022
Sodium - Dissolved	mg/L	<0.5	21
Potassium - Dissolved	mg/L	<0.5	1
Calcium - Dissolved	mg/L	<0.5	3
Magnesium - Dissolved	mg/L	<0.5	4
Hardness	mgCaCO 3 /L	<3	26

Miscellaneous Inorganics						
Our Reference		295747-1	295747-2	295747-3	295747-4	295747-5
Your Reference	UNITS	001-USW	002 - USNW	003 - DSE	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	18/05/2022	18/05/2022	18/05/2022	18/05/2022	18/05/2022
Date analysed	-	18/05/2022	18/05/2022	18/05/2022	18/05/2022	18/05/2022
Total Suspended Solids	mg/L	14	10	12	<5	<5
Total Dissolved Solids (grav)	mg/L	560	340	200	150	<5
Ammonia as N in water	mg/L	0.084	0.18	0.060	0.021	<0.005
Chlorophyll a	mg/m ³	35	4	<2	<2	<2
Phosphate as P in water	mg/L	<0.005	0.01	0.03	<0.005	0.02
Nitrate as N in water	mg/L	0.056	0.25	<0.005	3.5	0.006
NOx as N in water	mg/L	0.06	0.3	<0.005	3.5	0.006
Total Nitrogen in water	mg/L	0.8	1.2	1	3.7	<0.1

Miscellaneous Inorganics			
Our Reference		295747-6	295747-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date prepared	-	18/05/2022	18/05/2022
Date analysed	-	18/05/2022	18/05/2022
Total Suspended Solids	mg/L	<5	<5
Total Dissolved Solids (grav)	mg/L	18	120
Ammonia as N in water	mg/L	<0.005	0.024
Chlorophyll a	mg/m ³	<2	<2
Phosphate as P in water	mg/L	0.02	<0.005
Nitrate as N in water	mg/L	<0.005	3.2
NOx as N in water	mg/L	<0.005	3.2
Total Nitrogen in water	mg/L	<0.1	3.5

Method ID	Methodology Summary
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.
Inorg-019	Suspended Solids - determined gravimetricially by filtration of the sample. The samples are dried at 104+/-5°C.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCI extraction.
Inorg-060	Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
INORG-119	Chlorophyll A based on APHA 10200 H latest edition.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALITY CONT	ROL: vTRH((C6-C10)/E	BTEXN in Water		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			18/05/2022	1	18/05/2022	19/05/2022		18/05/2022	
Date analysed	-			19/05/2022	1	19/05/2022	20/05/2022		19/05/2022	
TRH C ₆ - C ₉	µg/L	10	Org-023	<10	1	<10	<10	0	100	
TRH C ₆ - C ₁₀	µg/L	10	Org-023	<10	1	<10	<10	0	100	
Benzene	µg/L	1	Org-023	<1	1	<1	<1	0	91	
Toluene	µg/L	1	Org-023	<1	1	<1	<1	0	98	
Ethylbenzene	µg/L	1	Org-023	<1	1	<1	<1	0	101	
m+p-xylene	µg/L	2	Org-023	<2	1	<2	<2	0	104	
o-xylene	µg/L	1	Org-023	<1	1	<1	<1	0	98	
Naphthalene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	103	1	103	94	9	107	
Surrogate toluene-d8	%		Org-023	100	1	101	100	1	102	
Surrogate 4-BFB	%		Org-023	98	1	100	101	1	100	

QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			19/05/2022	3	19/05/2022	19/05/2022		19/05/2022	
Date analysed	-			19/05/2022	3	19/05/2022	19/05/2022		19/05/2022	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	3	<50	<50	0	101	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	3	<100	<100	0	93	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	3	<100	<100	0	78	
TRH >C10 - C16	µg/L	50	Org-020	<50	3	<50	<50	0	101	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	3	<100	<100	0	93	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	3	<100	<100	0	78	
Surrogate o-Terphenyl	%		Org-020	90	3	89	78	13	93	[NT]

QUALITY CO	NTROL: OCF	s in Wate	er - Low Level			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	295747-4	
Date extracted	-			19/05/2022	3	19/05/2022	19/05/2022		19/05/2022	19/05/2022	
Date analysed	-			20/05/2022	3	20/05/2022	20/05/2022		20/05/2022	20/05/2022	
alpha-BHC	µg/L	0.01	Org-022/025	<0.01	3	<0.01	<0 01	0	107	104	
НСВ	µg/L	0.01	Org-022/025	<0.01	3	<0.01	<0 01	0		[NT]	
beta-BHC	µg/L	0.01	Org-022/025	<0.01	3	<0.01	<0 01	0	110	104	
gamma-BHC	µg/L	0.01	Org-022/025	<0.01	3	<0.01	<0 01	0		[NT]	
Heptachlor	µg/L	0.01	Org-022/025	<0.01	3	<0.01	<0 01	0	105	103	
delta-BHC	µg/L	0.01	Org-022/025	<0.01	3	<0.01	<0 01	0		[NT]	
Aldrin	µg/L	0.01	Org-022/025	<0.01	3	<0.01	<0 01	0	114	107	
Heptachlor Epoxide	µg/L	0.01	Org-022/025	<0.01	3	<0.01	<0 01	0	114	108	
gamma-Chlordane	µg/L	0.01	Org-022/025	<0.01	3	<0.01	<0 01	0		[NT]	
alpha-Chlordane	µg/L	0.01	Org-022/025	<0.01	3	<0.01	<0 01	0		[NT]	
Endosulfan I	µg/L	0.01	Org-022/025	<0.01	3	<0.01	<0 01	0		[NT]	
pp-DDE	µg/L	0.01	Org-022/025	<0.01	3	<0.01	<0 01	0	110	104	
Dieldrin	µg/L	0.01	Org-022/025	<0.01	3	<0.01	<0 01	0	119	106	
Endrin	µg/L	0.01	Org-022/025	<0.01	3	<0.01	<0 01	0	108	109	
Endosulfan II	µg/L	0.01	Org-022/025	<0.01	3	<0.01	<0 01	0		[NT]	
pp-DDD	µg/L	0.01	Org-022/025	<0.01	3	<0.01	<0 01	0	112	107	
Endrin Aldehyde	µg/L	0.01	Org-022/025	<0.01	3	<0.01	<0 01	0		[NT]	
pp-DDT	µg/L	0.006	Org-022	<0.006	3	<0.006	<0.006	0		[NT]	
Endosulfan Sulphate	µg/L	0.01	Org-022/025	<0.01	3	<0.01	<0 01	0	106	104	
Methoxychlor	µg/L	0.01	Org-022/025	<0.01	3	<0.01	<0 01	0		[NT]	
Surrogate TCMX	%		Org-022/025	74	3	107	110	3	106	93	

QUALITY CONTR	ol: op in w	ater LL A	NZECCF/ADWG			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	295747-4
Date extracted	-			19/05/2022	3	19/05/2022	19/05/2022		19/05/2022	19/05/2022
Date analysed	-			20/05/2022	3	20/05/2022	20/05/2022		20/05/2022	20/05/2022
Dichlorovos	µg/L	0.2	Org-022/025	<0.2	3	<0.2	<0.2	0	115	132
Dime hoate	µg/L	0.15	Org-022/025	<0.15	3	<0.15	<0.15	0	[NT]	[NT]
Diazinon	µg/L	0.01	Org-022/025	<0.01	3	<0.01	<0 01	0	[NT]	[NT]
Chlorpyriphos-methyl	µg/L	0.2	Org-022/025	<0.2	3	<0.2	<0.2	0	[NT]	[NT]
Methyl Para hion	µg/L	0.2	Org-022/025	<0.2	3	<0.2	<0.2	0	[NT]	[NT]
Ronnel	µg/L	0.2	Org-022/025	<0.2	3	<0.2	<0.2	0	104	100
Fenitrothion	µg/L	0.2	Org-022/025	<0.2	3	<0.2	<0.2	0	118	123
Malathion	µg/L	0.05	Org-022/025	<0.05	3	<0.05	<0 05	0	125	114
Chlorpyriphos	µg/L	0.01	Org-022/025	<0.01	3	<0.01	<0 01	0	118	115
Parathion	µg/L	0.01	Org-022/025	<0.01	3	<0.01	<0 01	0	118	124
Bromophos ethyl	µg/L	0.2	Org-022/025	<0.2	3	<0.2	<0.2	0	[NT]	[NT]
Ethion	µg/L	0.2	Org-022/025	<0.2	3	<0.2	<0.2	0	105	103
Azinphos-methyl (Guthion)	µg/L	0.02	Org-022/025	<0.02	3	<0.02	<0 02	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	74	3	107	110	3	106	93

QUALITY CONTROL: Miscellaneous Organics - water						Duplicate Spike Recove				covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	295747-2
Date prepared	-			19/05/2022	3	19/05/2022	19/05/2022		19/05/2022	19/05/2022
Date analysed	-			19/05/2022	3	19/05/2022	19/05/2022		19/05/2022	19/05/2022
Toxaphene*	µg/L	0.2	Org-022/025	<0.2	3	<0.2	<0.2	0	[NT]	[NT]
Demeton-O	µg/L	0.2	Org-022/025	<0.2	3	<0.2	<0.2	0		[NT]
Demeton-S	µg/L	5	Org-022/025	<5	3	<5	<5	0	[NT]	[NT]
Surrogate p-Terphenyl-d ₁₄	%		Org-022/025	110	3	64	64	0	71	70

QUALITY CC	NTROL: HN	1 in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	295747-2
Date prepared	-			19/05/2022	1	19/05/2022	19/05/2022		19/05/2022	19/05/2022
Date analysed	-			19/05/2022	1	19/05/2022	19/05/2022		19/05/2022	19/05/2022
Aluminium-Dissolved	µg/L	10	Metals-022	<10	1	40	40	0	95	82
Arsenic-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	93	96
Boron-Dissolved	µg/L	20	Metals-022	<20	1	100	100	0	86	120
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	98	98
Chromium-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	94	95
Copper-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	94	88
Cobalt-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	93	90
Lead-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	95	88
Manganese-Dissolved	µg/L	1	Metals-022	<1	1	410	410	0	94	94
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	1	<0.05	<0 05	0	105	104
Nickel-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	93	89
Selenium-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	93	97
Silver-Dissolved	µg/L	0.05	Metals-022	<0.05	1	<0.05	<0 0 5	0	97	106
Zinc-Dissolved	µg/L	1	Metals-022	<1	1	4	3	29	85	85

QUALITY CONTROL: Metals in Waters - Acid extractable						Duplicate Spike Recov				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	295747-2
Date prepared	-			19/05/2022	1	19/05/2022	19/05/2022		19/05/2022	19/05/2022
Date analysed	-			20/05/2022	1	20/05/2022	20/05/2022		20/05/2022	20/05/2022
Phosphorus - Total	mg/L	0.02	Metals-020	<0.02	1	0.09	0.1	11	95	95
QUALITY CONTROL: Metals in Waters - Acid extractable										
	⊃I · Motals ir	waters.	Acid extractable			Du	nlicate		Snike Re	
QUALITY CONTRO Test Description	OL: Metals ir Units	n Waters - PQL	- Acid extractable Method	Blank	#	Du Base	plicate Dup.	RPD	Spike Re LCS-W2	covery % [NT]
				Blank (NT)	# [NT]			RPD [NT]		
Test Description	Units					Base	Dup.		LCS-W2	[NT]

QUALITY CONTROL: Cations in water Dissolved						Duplicate Spike Recov				covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	295747-2
Date digested	-			19/05/2022	1	19/05/2022	19/05/2022		19/05/2022	19/05/2022
Date analysed	-			19/05/2022	1	19/05/2022	19/05/2022		19/05/2022	19/05/2022
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	89	88	1	99	109
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	5.2	5.2	0	90	90
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	44	45	2	91	96
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	17	17	0	97	97
Hardness	mgCaCO 3/L	3	Metals-020	[NT]	1	180	180	0	[NT]	[NT]

QUALITY CO		Du	plicate		Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	295747-2
Date prepared	-			18/05/2022	1	18/05/2022	18/05/2022		18/05/2022	18/05/2022
Date analysed	-			18/05/2022	1	18/05/2022	18/05/2022		18/05/2022	18/05/2022
Total Suspended Solids	mg/L	5	Inorg-019	<5	1	14			98	[NT]
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	1	560	580	4	118	[NT]
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	0.084	0.085	1	108	93
Chlorophyll a	mg/m ³	2	INORG-119	<2	1	35			102	[NT]
Phosphate as P in water	mg/L	0.005	Inorg-060	<0.005	1	<0.005	<0.005	0	101	102
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.056	0.053	6	99	89
NOx as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.06	0.06	0	99	89
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127	<0.1	1	0.8	0.9	12	101	91

Result Definiti	esult Definitions						
NT	Not tested						
NA	Test not required						
INS	Insufficient sample for this test						
PQL	Practical Quantitation Limit						
<	Less than						
>	Greater than						
RPD	Relative Percent Difference						
LCS	Laboratory Control Sample						
NS	Not specified						
NEPM	National Environmental Protection Measure						
NR	Not Reported						

Quality Control Definitions							
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.						
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.						
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.						
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.						
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which						

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

are similar to the analyte of interest, however are not expected to be found in real samples.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% - see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Miscellaneous Organics - water - The recovery of LCS and matrix spike cannot be reported due to the fact they are not in the list of analytes requested. However, the non-reported analytes within the LCS and matrix spike had acceptable recoveries.